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Abstract

We consider the damped time-harmonic Galbrun’s equation which is used to model solar- and
stellar oscillations. We introduce a fully discontinuous Galerkin finite element discretization
that is nonconforming with respect to the convection and the diffusion operators and is
robust with respect to the severe changes in the magnitude of the density and sound speed
that occur in the interior of the sun. Further, we establish the stability of the method and
derive convergence estimates. The analysis is based on the concepts of discrete approximation
schemes, weak T-coercivity and weak T-compatibility. In addition, we present numerical results
validating our theoretical findings. Furthermore, we explore the possibility of hybridizing the
method to enhance the computational feasibility of the method, although we do not provide a
rigorous analysis of the hybridized method.

Keywords: Galbrun’s equation, stellar oscillations, discontinuous Galerkin, (weak) T-coercivity,
(weak) T-compatibility, discrete approximation schemes.
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Introduction

In this thesis, we consider the damped time-harmonic Galbrun’s equation, which models
time-harmonic acoustic waves in the presence of a steady background flow, in a bounded
Lipschitz domain O ⊂ R3 with boundary ∂O. The equation reads as follows:

−∇(ρc2
s divu) + (divu)∇p−∇(∇p · u)− ρ(ω + i∂b + iΩ×)2u

+ (Hess(p)− ρHess(φ))u+ γρ(−iω)u = f in O, (0.1a)

ν · u = 0 on ∂O. (0.1b)

Here ρ, p, cs, φ, b, Ω, and f denote the density, the pressure, the sound speed, the gravita-
tional background potential, the background velocity, the angular velocity of the frame and
the source term. The damping is modeled by −iωγρu with damping coefficient γ. Further-
more, ∂b :=

∑3
l=1 bl∂xl denotes the directional derivative in the direction of the flow b and

Hess(·) the Hessian. The unknown u describes the Lagrangian perturbations of displacement.
Studying Galbrun’s equation in this form is motivated by the equations of solar and stellar
oscillation, which were first derived in [LO67]. With an additional unknown ψ describing the
scaled Eulerian perturbations of the gravitational potential, the equations of solar and stellar
oscillation read as follows:

−ρ(ω + i∂b + iΩ×)2u−∇(ρc2
s divu) + (divu)∇p−∇(∇p · u)

+ (Hess(p)− ρHess(φ))u+ γρ(−iω)u− ρ∇ψ = f in O, (0.2a)

− 1

4πG
∆ψ + div(ρu) = 0 in R3. (0.2b)

Starting from (0.2), we recover Galbrun’s equation (0.1a) with the Cowling-approximation
[Cow41] which sets ψ = 0. The main motivation to study solar oscillations comes from
the field of (local) Helioseismology, the study of the solar interior through solar oscillations
[GBS10]. The oscillations are excited by turbulent convection in the outer convection zone
of the sun and can be measured on earth with Doppler shift measurements. Techniques
to interpret this data, like time-distance helioseismology [GB02], involve solving both, the
inverse problem of determining the solar interior from the measured data and the forward
problem of predicting the measured data from a given model of the solar interior. For the
latter, reliable numerical discretizations of Galbrun’s equation (and ultimately, the equations of
solar and stellar oscillation) are required. This task is one of the main goals of the project C04
of the Collaborative Research Center CRC1456 "Mathematics of Experiment" at the University
of Göttingen.

When discretizing and analyzing (0.1) we face multiple challenges. First of all, equation (0.1a)
involves two competing second-order differential operators that lead to different signs in the
weak formulation of the problem which makes it challenging to apply standard techniques
for proving well-posedness. Furthermore, we have to deal with a non-standard differential
operator ∂b involving the background flow b while also avoiding too restrictive assumptions
on the Mach number ‖c−1

s b‖L∞ . We also have to be meticulous about constants involving
the sound speed cs and the density ρ which vary drastically in the sun, see also Fig. 7.14.
Thus, we want to avoid estimates where constants involve the ratios

csρ

csρ
. Finally, physically

3

https://www.uni-goettingen.de/en/630954.html


realistic computations can become very expensive, in particular, if we want to consider the full
three-dimensional problem. Thus, it is highly desirable to consider techniques, for instance,
Hybridization, that reduce the computational costs.

The well-posedness of Galbrun’s equation (0.1) and the equations of solar and stellar oscil-
lation (0.2) in a continuous setting has been proven recently by Halla and Hohage [HH21].
Afterwards, the work on discretizations of Galbrun’s equation started. In a previous Mas-
terthesis by Tilman Alemán [Ale22] and a resulting proceedings paper [Ale+22], a simplified
vectorial PDE with a similar structure as Galbrun’s equation was considered. There the authors
considered different robust finite element discretizations, in particular an H1-conforming, an
H(div)-conforming discontinuous Galerkin and a fully discontinuous Galerkin method. Based
on this guideline for further research on robust discretizations for Galbrun’s equations, an
H1-conforming discretization of Galbrun’s equation was introduced and analyzed by Halla
et al [HLS22]. Furthermore, Halla [Hal23] introduced and analyzed an H(div)-conforming
discontinuous Galerkin scheme for (0.1), which is nonconforming with respect to the convec-
tion term involving the directional derivative ∂b. The main research goal of this thesis is to
extend this work to the fully discontinuous case, which is nonconforming with respect to the
convection term and the diffusion term. Furthermore, we start to investigate hybridization
techniques that ease the computational burden for both the H(div)-conforming- and the fully
discontinuous Galerkin discretization. From an educational point of view, this thesis further
aims to provide a comprehensive introduction to the techniques employed to analyze the
aforementioned discretizations of Galbrun’s equation.

Organization of the thesis

This thesis is divided into two parts. Part I introduces the theoretical framework that we will
use to analyze the proposed discretization of Galbrun’s equation in Part II. To be precise, the
first part is structured as follows:

• Chapter 1 reviews abstract well-posedness results for variational problems. We introduce
the concepts of T-coercivity and weak T-coercivity, discuss their connection with well-
known well-posedness results such as the BNB-Theorem, and show how they can be
used to analyze variational problems.

• Chapter 2 introduces the abstract framework of discrete approximation schemes which
allows us to analyze approximations of variational problems. Furthermore, we introduce
the concept of (weak) T-compatibility to connect these techniques with the notion of
(weak) T-coercivity.

• In Chapter 3, we apply the techniques developed in the previous chapters to a sim-
pler model problem, the Helmholtz equation with homogeneous Dirichlet boundary
conditions. We consider the continuous problem, a conforming Galerkin discretization
and a discontinuous Galerkin discretization. Furthermore, we introduce the concept of
hybridization.

The second part of the thesis is structured as follows:

• In Chapter 4, we briefly introduce Galbrun’s equation and review the analysis of the
continuous problem from [HH21].
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• Chapter 5 reviews existing discretizations for Galbrun’s equation, in particular, the H1-
conforming scheme from [HLS22] and the H(div)-conforming discretization introduced
in [Hal23]. For the latter, we review the analysis extensively since it serves as a basis for
the analysis of the fully discontinuous Galerkin scheme. We briefly introduce (without
analysis) a hybridized formulation of the H(div)-conforming scheme.

• In Chapter 6, we formulate and analyze a fully discontinuous Galerkin scheme for
Galbrun’s equation using the techniques introduced in Part I. We show that the scheme
can be considered as a discrete approximation scheme and that we can apply the weak
T-compatibility conditions to prove that the proposed scheme is stable. In the last part
of the chapter, we briefly introduce a hybridized formulation of the fully discontinuous
Galerkin scheme.

• Chapter 7 presents numerical experiments to validate the theoretical results from
Chapters 5 and 6. In particular, we discuss the implementation of the methods and
consider a manufactured solution to verify the convergence rates. Furthermore, we
consider an example with physically realistic parameters from the sun. We conclude
with a brief discussion on computational challenges arising from the application of the
discretizations to Helioseismology.

• We conclude in Chapter 8 with a summary of the results and an outlook on future work.

Furthermore, we introduce some theoretical concepts that are applied throughout this thesis
in the appendix in Chapter A.

Software and replication

The numerical examples are implemented with the open source finite element software
Netgen/NGSolve [Sch97; Sch14] which is available at

https://ngsolve.org/

We use the Python packages pandas and numpy to collect the data and use the LATEX-package
tikz for visualization. The numerical examples can be replicated with the provided reproduc-
tion files [Bee23].

Notation

Throughout this thesis, we will usually consider D or O as the default domain for all function
spaces and write e.g. L2 := L2(O). Furthermore, we denote scalar function spaces as X
and use the boldface notation for its vectorial variant, that is X := (X)d, and their elements.
Unless specified otherwise, all function spaces are considered over C. We will use the notation
〈·, ·〉X or (·, ·)X for scalar products on a space X and use the notation without index 〈·, ·〉 and
(·, ·) for both the scalar L2- and the vectorial L2-inner product. For any space X ⊂ L2, we
set X∗ := {u ∈ X : 〈u, 1〉 = 0}. In particular, we denote L2

0 := L2
∗. Furthermore, we use the

notation A . B for quantities A and B if there exists a constant C > 0 such that A ≤ CB,
where C may depend on the domain, the parameters, and the sequence of approximation
spaces (Xn)n∈N, but not on the index n and functions involved in A and B. Note that the
constant may change at each occurrence. Finally, we will usually use lowercase letters, e.g.,
a or an, for sesquilinear forms and uppercase letters, e.g. A or An for linear operators. We
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note that unless specified otherwise, the sesquilinear forms and linear operators are redefined
in each chapter. For mesh elements τ ∈ Tn, we denote by Pk(τ) and Pk(τ) the spaces of
scalar and vectorial piecewise polynomials up to degree k on τ . Furthermore, we denote by
Pk(Tn) := {v ∈ L2 : v|τ ∈ Pk(τ) ∀τ ∈ Tn} the space of piecewise polynomials up to degree k.
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Part I

Theoretical framework
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CHAPTER 1

Abstract well-posedness results

In this chapter, we review abstract results from functional analysis to prove the well-posedness
of variational problems. We briefly discuss the classical and well-known notions of coercivity
and inf-sup stability. Afterwards, we introduce and discuss the concept of (weak) T-coercivity.
We expect the reader to be familiar with the concepts of operator theory and Fredholm
operators discussed in the Appendix A. The first part of this chapter is partially based on
[EG21b, Chap. 25].

Contents of the chapter

1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Characterization of injective and bijective operators . . . . . . . . . . . . . . . 9
1.3 Classical well-posedness results . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 T-coercivity and weak T-coercivity . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 Preliminaries

In the following, let X and Y be complex Banach spaces with associated norms ‖ · ‖X and
‖ · ‖Y . Furthermore, let A ∈ L(X,Y ′) be a bounded linear operator and f ∈ Y ′, where Y ′

denotes the dual space of Y . We want to study the existence and uniqueness of solutions to
the following equation in operator form:

Find u ∈ X s.t. Au = f in Y ′. (1.1)

In practice, X and Y are usually Hilbert spaces and we are given a bounded sesquilinear form
a : X×Y → C and a bounded antilinear form f : Y → C. Then, due to the Riesz isomorphism
[EG21b, Thm. C.24], we can identify Y ′ with Y and further identify1 the sesquilinear form as
a bounded linear operator A ∈ L(X,Y ) via the relation

(Au, v)Y = a(u, v) for all u ∈ X, v ∈ Y. (1.2)

Because of this identification, we will use the notation a(·, ·) for a sesquilinear form and
A ∈ L(X,Y ) for the associated bounded linear operator interchangeably.
Therefore, studying the well-posedness of the problem

Find u ∈ X s.t. a(u, v) = f(v) for all v ∈ Y, (1.3)

1We note that this identification is not only possible in the Hilbert case. If a : X × Y → C is a bounded
sesquilinear form on Banach spaces X,Y , we can identify a(·, ·) with a bounded linear operator A ∈ L(X,Y ′) via
the duality pairing: 〈Au, v〉Y ′,Y := a(u, v). However, the Hilbert case is more convenient, since we can use the
inner product (·, ·)Y due to the Risz isomorphism.
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Chapter 1. Abstract well-posedness results

amounts to studying the well-posedness of an operator equation of the form (1.1). As the
dual space of a Banach space is Banach itself, we will write A ∈ L(X,Y ) and f ∈ Y for ease
of presentation. The following sections will summarize conditions to guarantee the bijectivity
of the operator A and hence the well-posedness of problems (1.1) and (1.3).

1.2 Characterization of injective and bijective operators

First of all, we state two abstract results from functional analysis that serve as a basis for the
well-posedness results in the following section.

Lemma 1.1. Let A ∈ L(X,Y ). Then, the following statements are equivalent:

(i) A∗ : Y ′ → X ′ is surjective,

(ii) A : X → Y is injective and ran(A) is closed in Y ,

(iii) There exists α > 0 such that

‖Au‖Y ≥ α‖u‖X ∀u ∈ X.

Proof. We refer to [EG21b, Lem. C.39].

Theorem 1.2. Let A ∈ L(X,Y ). Then, the following statements are equivalent:

(i) A : X → Y is bijective,

(ii) A is injective, ran(A) is closed in Y and A∗ : Y ′ → X ′ is injective,

(iii) A∗ is injective and there exists α > 0 such that

‖Au‖Y ≥ α‖u‖X ∀u ∈ X.

Proof. See [EG21b, Thm. C.49].

1.3 Classical well-posedness results

In this section, we will review classical well-posedness results. First, we introduce the concept
of coercivity and state the Lax-Milgram Lemma, which can only be applied when test- and
trialspaces are identical. Afterwards, we define inf-sup stability and state the Banach-Nečas-
Babuška (BNB) Theorem, which can also be applied when test- and trialspaces are different
and is, therefore, more general than the Lax-Milgram Lemma.

Definition 1.3 (Coercivity). Let X be a Hilbert space. We call an operator A ∈ L(X,X)
coercive, if there exists a constant α > 0 such that

|(Au, u)X | ≥ α‖u‖2X ∀u ∈ X. (1.4)

Equivalently2, A is coercive if there exists a real number α > 0 and ξ ∈ C, |ξ| = 1, s.t.

<
(
ξ(Au, u)X

)
≥ α‖u‖2X ∀u ∈ X. (1.5)

2For a proof of the equivalence, we refer to [EG21b, Lem. C.58] and references therein.
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1.3. Classical well-posedness results

Lemma 1.4 (Lax-Milgram Lemma). Let X be a Hilbert space and A ∈ L(X,X) be a bounded
linear operator. If A is coercive in the sense of Definition 1.3, then A is bijective.

Proof. We follow the proof of [EG21b, Lem. 25.2]. Due to (1.5) and ξa(u, u) = a(u, ξu), we
have that

α‖u‖X ≤
<(a(u, ξu))

‖u‖X
≤ sup

v∈X\{0}

<(a(u, ξv))

‖v‖X
≤ sup

v∈X\{0}

|a(u, v)|
‖v‖X

= ‖Au‖X .

Therefore we conclude with Lemma 1.1 that A is injective and ranA is closed. If we show that
A∗ is injective as well, we can apply Theorem 1.2 to conclude the bijectivity of A. To this end,
let u ∈ X be such that A∗u = 0. Then, we have that 0 = 0 = (A∗u, ξu)X = ξa(u, u). But (1.5)
implies that α‖u‖2X ≤ <(ξa(u, u)) = 0 and hence u = 0. Thus, A∗ is injective and therefore A
is bijective.

Remark 1.5 (Coercivity and Hilbert space structure). The notion of coercivity is intimately tied
to the Hilbert space structure of the underlying space. It can be shown that a Banach space can
be equipped with a Hilbert space structure with the same topology if and only if there exists a
coercive operator on the space [EG21b, Prop. C.59]. Consequently, the Lax-Milgram Lemma is
only applicable on Hilbert spaces.

In the following, we assume once more that X and Y are complex Banach spaces. In addition,
we require Y to be reflexive, i.e. the canonical isometry Y → Y ′′ is an isomorphism, cf. [EG21b,
Def. C.18]. Note that every Hilbert space is reflexive.

Definition 1.6 (Inf-sup condition). The operator A ∈ L(X,Y ) fulfills the inf-sup condition, if
there exists a constant β > 0 such that

inf
u∈X\{0}

sup
v∈Y \{0}

|〈Au, v〉Y ′,Y |
‖u‖X‖v‖Y

≥ β > 0. (1.6)

Theorem 1.7 (BNB-theorem). Let X and Y be Banach spaces and let Y be reflexive. Further, let
A ∈ L(X,Y ) be a bounded linear operator. If

(i) A fulfills the inf-sup condition (1.6),

(ii) ∀v ∈ Y , [∀u ∈ X, 〈Au, v〉Y ′,Y = 0]⇒ [v = 0],

then the operator A is bijective.

Proof. By Lemma 1.1, the inf-sup conditions (1.6) is equivalent to A being injective and ran(A)
being closed. Thus, it suffices to show that A∗ is injective by Theorem 1.2, which indeed
follows from (ii). For more details, we refer to [EG21b, Thm. 25.9].

Remark 1.8. The BNB Theorem is more general than the Lax-Milgram Lemma since it can be
applied on Banach spaces and when test- and trialspaces are different. If test- and trialspaces
coincide and X is a Hilbert space, then coercivity implies the inf-sup condition. The converse is
not true in general. Thus, coercivity is only a sufficient criterion for well-posedness, while the
BNB-conditions are necessary and sufficient.

Remark 1.9 (Discrete coercivity and discrete inf-sup stability). For conforming discretizations,
i.e. Xh ⊂ X, Yh ⊂ Y and Ah := A|Xh×Xh , the coercivity property (1.4) is inherited onto the
discrete level. In contrast, the inf-sup condition (1.6) is not directly inherited onto the discrete
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Chapter 1. Abstract well-posedness results

level. To conclude the stability of the discrete problem, one has to show3 that the sesquilinear
form Ah : Xh × Yh → C fulfills the uniform discrete inf-sup condition

inf
uh∈Xh

sup
vh∈Yh

|(Ahuh, vh)Y |
‖uh‖X‖vh‖Y

≥ β > 0,

where β > 0 is a constant independent of h. It can be shown that the continuous inf-sup condition
is inherited onto the discrete level if and only if there exists an operator Πh : Y → Yh such that
(Auh,Πhv − v)Y = 0 for all (un, v) ∈ Xh × Y and ‖Πhv‖Y . ‖v‖Y for all v ∈ Y , cf. [EG21b,
Lem. 26.9]. The operator Πh is called Fortin-operator.

Remark 1.10 (Inf-sup stable spaces for the divergence operator and the de Rham complex).
The construction of finite element spaces that fulfill the discrete inf-sup condition for the divergence
operator deserves some attention here, in particular since the construction of stable discretizations
for Galbrun’s equation is related to the construction for the Stokes problem, cf. [Ale+22; HLS22].
A popular approach for constructing inf-sup stable finite element pairs is the de Rham complex; c.f.,
for example, [Joh+17; BBF13]. On a simply connected domain Ω ⊂ R2, the following sequence
is exact

R −→ H1(Ω)
curl−→H(div,Ω)

div−→ L2(Ω) −→ 0,

i.e., the range of each operator is the kernel of the subsequent one. If we construct finite element
spaces4 Yh ⊂ H1(Ω), Wh ⊂H(div,Ω), and Qh ⊂ L2(Ω) such that the following subcomplex

R −→ Yh
curl−→Wh

div−→ Qh −→ 0

forms an exact sequence, then the discrete inf-sup condition for the divergence operator is
automatically fulfilled for Wh ×Qh [Joh+17, Sec. 4.3]. Classical choices for H(div)-conforming
subspaces are Raviart-Thomas or Brezzi-Douglas-Marini elements [BBF13, Sec. 2.3], which
together with Qh being the space of discontinuous piecewise polynomials of degree k, or k − 1,
respectively, form inf-sup stable pairs for the divergence oeperator.

1.4 T-coercivity and weak T-coercivity

In this section, we review the concept of T-coercivity. In a sense, T-coercivity can be interpreted
as a notion of coercivity when the test- and trialspaces do not coincide. The term T-coercivity
was introduced in [BCZ10], but the concept goes back at least to [BCS02]. So far, the
concept has been applied mainly to problems involving compact perturbations of bijective
operators, for example, the Helmholtz equation [Cia12], and to problems involving sign-
changing coefficients [BCC18; BCC14; Hal21]. From now on, we assume that X and Y are
Hilbert spaces, which means, in particular, that the respective dual spaces are isomorphic to
the respective spaces themselves.

Definition 1.11 (T-coercivity). A bounded linear operator A ∈ L(X,Y ) is called T -coercive,
if there exists a bijective operator T ∈ L(X,Y ) such that T ∗A ∈ L(X,X) is coercive, that is
there exists α > 0 s.t.

|(T ∗Au, u)X | = |(Au, Tu)Y | ≥ α‖u‖2X ∀u ∈ X.
3Additionally, we usually require that dim(Xh) = dim(Yh), which is equivalent to the second condition in the

BNB Theorem.
4we emphasize again that we are in the two-dimensional case here.
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1.4. T-coercivity and weak T-coercivity

Remark 1.12 (Left and right T-coercivity). To be precise, we call the above notion of T-coercivity
left T-coercivity. In contrast, we say that an operator A ∈ L(X,Y ) is right T-coercive, if there
exists a bijective operator T ∈ L(Y,X) such that AT ∈ L(Y, Y ) is coercive, that is there exists
α > 0 s.t.

|(ATv, v)Y | ≥ α‖v‖2Y ∀v ∈ Y.

We note that right T-coercivity can be useful to use because it avoids the adjoint operator T ∗. Both
concepts are visualized in Fig. 1.1.

X Y
A

T

T ∗A

T ∗

(a) Left T -coercivity

X YA

T

AT

(b) Right T -coercivity

Figure 1.1: Illustration of left and right T-coercivity.

We note that the notion of T-coercivity also requires a Hilbert space structure, as is the case for
coercivity, cf. Remark 1.5. If we are working on Hilbert spaces, the following Lemma shows
that T-coercivity is indeed equivalent to the BNB-conditions from Thm. 1.7. Thus, it suffices to
show T-coercivity to conclude the well-posedness of the problem.

Lemma 1.13. Let X and Y be Hilbert spaces and A ∈ L(X,Y ) be a bounded linear operator.
Then, A is T-coercive if and only if A fulfills the BNB-conditions from Thm. 1.7.

Proof. We follow [EG21b, Exercise 25.10]. Suppose there exists a bijective operator T ∈
L(X,Y ) such that A is T -coercive. Then, we have that

α‖u‖2X ≤
|(Au, Tu)Y |
‖Tu‖Y

‖Tu‖Y ≤ sup
v∈Y \{0}

|(Au, v)Y |
‖v‖Y

‖T‖L(X,Y )‖u‖X .

Thus, (1.6) is fulfilled. To consider the second BNB-condition, let v ∈ Y be such that
(Au, v)Y = 0 for all u ∈ X. As T is bijective, there exists ũ ∈ X such that T ũ = v. Therefore,
we have that

0 = (Aũ, v)Y = (Aũ, T ũ)Y ≥ α‖ũ‖2X .

Hence, it holds that ũ = 0 and by bijective v = T ũ = 0. Conversely, if the BNB-conditions
hold true, then A ∈ L(X,Y ) is an isomorphism and A−1 ∈ L(Y,X) exists. Then, we set
T := J−1

Y (A−1)∗JRF
X , where JY : Y → Y ′′ is the canonical isomorphism from Y to Y ′′ and

JRF
X : X → X ′ is the Riesz-Fréchet isomorphism. Then T ∈ L(X,Y ) is an isomorphism and

for all u ∈ X, we have that

(Au, Tu)X = 〈(A−1)∗(JRF
X (u)), Au〉Y ′′,Y = 〈JRF

X (u), u〉X′,X = ‖u‖2X .

Thus, A is T -coercive.

We can weaken the notion of T-coercivity by introducing compact perturbations. This leads to
the following definition.

Definition 1.14 (weak T -coercivity). Let A ∈ L(X,Y ) be a bounded linear operator and
T ∈ L(X,Y ) be bijective. The operator A is called weakly T -coercive, if there exists a compact
operator K ∈ L(X,X) such that T ∗A+K is coercive.

12



Chapter 1. Abstract well-posedness results

Remark 1.15 (Discrete (weak) T-coercivity). As is the case for inf-sup stability, cf. Remark
1.9, the property of (weak) T-coercivity is in general not inherited onto the discrete level. As for
T-coercivity, we can show that discrete T-coercivity is equivalent to the discrete inf-sup condition
[Cia12, Thm. 2]. We recall from Remark 1.9 that the inf-sup condition is inherited onto the
discrete level if and only if there exists a Fortin operator. Naturally, we have a similar relationship
for T-coercivity. For instance, in the case of conforming discretizations, we can construct a
discrete Tn-operator through Tn = ΠnT such that discrete Tn-coercivity holds if a Fortin operator
Πn : Y → Yn exists. This relationship is explored in more detail in a recent preprint by Barré
and Ciarlet [BC22], where the authors showed that for the mixed Stokes problem, T-coercivity is
inherited onto the discrete level if a Fortin operator exits.

We note that in the spirit of Remark 1.12, we also speak of left and right weak T-coercivity. The
following Lemma shows that the notion of weak T-coercivity is useful to prove well-posedness
since it implies that the operator A is Fredholm with index zero. Thus, to show the bijectivity
of A, it suffices to show injectivity.

Lemma 1.16. Let A ∈ L(X,Y ) be a bounded linear operator and T ∈ L(X,Y ) be bijective. If
A is weakly T-coercive, then A is Fredholm with index zero.

Proof. By the Lax-Milgram Lemma 1.4, the operator T ∗A + K is bijective and therefore
Fredholm with index zero. Consequently, T ∗A is Fredholm with indT ∗A = ind(T ∗A+K) = 0
by thm. A.23. Since T is bijective, T−∗ is Fredholm with index zero and thus thm. A.22 yields
that A = T−∗T ∗A is Fredholm with index zero as a composition of Fredholm operators with
index zero.

Corollary 1.17. Let A ∈ L(X,Y ) be a bounded linear operator. If A is weakly T-coercive and
injective, then A is bijective.

Proof. By the previous Lemma, A is a Fredholm operator with index zero. Since A is injective,
it follows by Lemma A.26 that A is bijective.

13



CHAPTER 2

Discrete Approximation Schemes

In this chapter, we will introduce an abstract framework for analyzing approximations of
operator equations in Banach spaces. These types of problems have been studied intensively
by, for example, Anselone [AM64; AT85], Grigorieff [Gri69], Jeggle [Jeg72], Karma [Kar96a;
Kar96b], Petryshyn [Pet93], Stummel [Stu70; Stu71] and Vainikko [Vai76]. We will also
explore the connection with T-coercivity via the T-compatibility criterion introduced by Halla
[Hal21] and review a weaker notion of T-compatibility [HLS22], which we will apply to
Galbrun’s equation in Part II of this thesis; see also [HLS22; Hal23]. In particular, we will
follow the roadmap provided in Section 2.5 to show the well-posedness of the equation and
the stability of the approximation. This chapter mainly follows the presentation of Vainikko
[Vai76]. In order to be able to draw from a variety of results, we will introduce the concepts
in a general setting and restrict the framework afterwards to study approximations of PDE
problems. On occasion, we also draw inspiration from [Zei90b, Chap. 34].

Contents of the chapter

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Discrete convergence of linear operators . . . . . . . . . . . . . . . . . . . . . 16
2.3 Conforming Galerkin schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 T-compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1 Introduction

Let X and Y be Banach spaces, A ∈ L(X,Y ) be a bounded linear operator and f ∈ Y . In the
previous chapter, we considered the unique solvability of the operator equation

Find u ∈ X s.t. Au = f in Y. (2.1)

Now, we want to study approximations of (2.1) by sequences of Banach spaces (Xn)n∈N,
(Yn)n∈N and operators (An)n∈N, An ∈ L(Xn, Yn). Therefore, for fn ∈ Yn, we consider the
discrete problems

Find un ∈ Xn s.t. Anun = fn in Yn, n = 1, 2, . . . (2.2)

In particular, we want to answer the following question:

Question 2.1. What conditions on X, Y , Xn, Yn, A, An, f and fn are sufficient such that if the
continuous problem (2.1) has a unique solution u ∈ X, then the discrete problems (2.2) have
unique solutions un which converge to u?

14



Chapter 2. Discrete Approximation Schemes

To this end, we first have to introduce a notion of convergence between elements from X and
Xn, since we do not require the spaces Xn to be subspaces of X. Instead, we assume that
there exists a system of operators P = (pn)n∈N, pn : X → Xn, such that

lim
n→∞

‖pnu‖Xn = ‖u‖X , (2.3)

lim
n→∞

‖pn(αu− βv)− (αpnu+ βpnv)‖Xn = 0, (2.4)

for all α, β ∈ K and for all u, v ∈ X. We call the second condition (2.4) asymptotic linearity.
For ease of presentation, we will restrict ourselves to the case where pn ∈ L(X,Xn), which
trivially satisfies condition (2.4). The setup is visualized in Fig. 2.1.

(X, ‖ · ‖X)

(Xn1 , ‖ · ‖Xn1 ) . . . (Xnm , ‖ · ‖Xnm ) . . .

pn1 pnm ...

Figure 2.1: Set up.

Remark 2.1 (Boundedness of pn). If P = (pn)n∈N, pn ∈ L(X,Xn) is a system of linear bounded
operators such that (2.3) holds true, then the operator norm of pn is bounded uniformly as

‖pn‖L(X,Xn) = sup
u∈X\{0}

‖pnu‖Xn
‖u‖X

n→∞−→ 1.

In this setting, we can define the following notions of convergence and compactness.

Definition 2.2 (P-convergence). We call a sequence (un)n∈N with un ∈ Xn P-convergent to
u ∈ X and write un

P→ u if
‖pnu− un‖Xn → 0 as n→∞. (2.5)

Note that in the following, we will often simply speak of convergence, if the context is clear.

Remark 2.3. The notion of P-convergence fulfills the usual properties of limits. Straightforward
calculations yield

• For all u ∈ X, it holds that pnu
P→ u.

• If un
P→ u and un

P→ u′, then u = u′ (Uniqueness).

• If un
P→ u and vn

P→ v, a, b ∈ C, then aun + bvn
P→ au+ bv (Linearity).

• If un
P→ u, then ‖un‖Xn

n→∞−→ ‖u‖X .

• un
P→ 0 if and only if ‖un‖Xn

n→∞−→ 0.

Recall that we call a sequence (un)n∈N ⊂ X sequentially compact if for every sequence (un)n∈N
there exists a subsequence (unk)k∈N and u ∈ X such that un → u. In the following definition,
we will adapt this concept to fit our notion of P-convergence.

Definition 2.4 (P-compactness). A sequence (un)n∈N with un ∈ Xn is called P-compact, if
for every subsequence N′ ⊂ N there exists a subsubsequence N′′ ⊂ N′ and u ∈ X such that
un

P→ u, n ∈ N′′.
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2.2. Discrete convergence of linear operators

Remark 2.5 (Generalization to normed spaces). We follow the assumption from Vainikko
[Vai76] that X and (Xn)n∈N are Banach spaces. Stummel [Stu70] derives the setting on normed
spaces, that is, without the assumption of completeness. While this setting is more general than
what we consider here, the definitions are more technical due to the fact that we have to consider
representation classes of sequences.

2.2 Discrete convergence of linear operators

To answer the motivating Question 2.1, we are interested in the convergence of a sequence of
linear bounded operators (An)n∈N, An ∈ L(Xn, Yn), towards an operator A ∈ L(X,Y ), where
X,Y are Banach spaces and (Xn)n∈N,(Yn)n∈N are sequences of Banach spaces. As before, we
do not require the spaces Xn and Yn to be subspaces of X and Y . In view of the previously
introduced notion of P -convergence, we assume that there exist sequences P = (pn)n∈N,
pn ∈ L(X,Xn) and Q = (qn)n∈N, qn ∈ L(Y, Yn) such that

‖pnu‖Xn → ‖u‖X as n→∞, (2.6a)

‖qnv‖Yn → ‖v‖Y as n→∞. (2.6b)

The diagram in Fig. 2.2 visualizes these relationships.

(X, ‖ · ‖X) (Y, ‖ · ‖Y )

(Xn, ‖ · ‖Xn) (Yn, ‖ · ‖Yn)

A

pn qn

An

Figure 2.2: Set up, see [Vai76, p. 27]

The following definition allows us to speak of the convergence of a sequence of operators
An ∈ L(Xn, Yn) to an operator A ∈ L(X,Y ).

Definition 2.6 (PQ-convergence). We call a sequence of operators (An)n∈N, An ∈ L(Xn, Yn)

PQ-convergent to A ∈ L(X,Y ) and write An
PQ→ A, if for every P-convergent sequence (un)n∈N

we have that
un

P→ u⇒ Anun
Q→ Au, (2.7)

which means that

‖pnu− u‖Xn → 0⇒ ‖qnAu−Anun‖Yn → 0 as n→∞.

In the case that the spaces X and Y , as well as the spaces Xn and Yn, coincide, we simply
write An

P→ A. Throughout this thesis, we will often speak of a discrete approximation scheme.
To be precise, we make the following definition.

Definition 2.7 (Discrete approximation scheme). Let X be a Banach space and (Xn)n∈N be
a sequence of Banach spaces. Furthermore, let A ∈ L(X) be a bounded linear operator and
(An)n∈N, An ∈ L(Xn), be a sequence of bounded linear operators. We call (Xn, pn, An) a
discrete approximation scheme (DAS) of (X,A), if there exists a sequence of bounded linear
operators P = (pn)n∈N such that (2.3) is fulfilled and An

P→ A.

Lemma 2.8. The following statements are equivalent:

(i) An
PQ→ A.
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(ii) The exists C > 0 such that ‖An‖L(Xn,Yn) ≤ C for all n ∈ N and for all u ∈ X

‖Anpnu− qnAu‖Yn → 0. (2.8)

(iii) The exists C > 0 such that ‖An‖L(Xn,Yn) ≤ C for all n ∈ N and a dense subset X ′ ⊂ X
such that for all u′ ∈ X ′

‖Anpnu′ − qnAu′‖Yn → 0. (2.9)

Proof. We follow the argumentation of [Vai76, Chap. 2, Thm. (8)].

(i)⇒ (ii): Assume that An
PQ→ A. Suppose theres does not exists a constant C > 0 such that

‖An‖L(Xn,Yn) ≤ C for all n ∈ N, i.e. ‖An‖L(Xn,Yn) →∞ as n→∞. Then there exists u′n ∈ Xn

with ‖u′n‖Xn = 1 such that ‖Anu′n‖Yn →∞. Set un := u′n/‖Anu′n‖Yn . Then un
P→ 0, but since

‖Anun‖Yn = 1 by definition, Anun
Q

6→ A(0) = 0. This contradicts (i).
The second assertion follows, since pnu

P→ u for all u ∈ X, which implies Anpnu
Q→ Au by (i).

(ii)⇒ (iii): This direction follows immediately.

(iii)⇒ (i): Let (un)n∈N, un ∈ Xn, be given such that un
P→ u for some u ∈ X and assume that

(iii) holds true. We have to show that Anun
Q→ Au. Let ε > 0 and choose u′ ∈ X ′ such that

‖u′ − u‖X < ε. Then, we have that

‖Anun − qnAu‖Yn ≤ ‖An‖L(Xn,Yn)︸ ︷︷ ︸
≤C

‖un − pnu‖Xn︸ ︷︷ ︸
→0

+ ‖An‖L(Xn,Yn)︸ ︷︷ ︸
≤C

‖pnu− pnu′‖Xn︸ ︷︷ ︸
→‖u−u′‖X<ε

+ ‖Anpnu′ − qnAu′‖Yn︸ ︷︷ ︸
→0

+ ‖qnAu′ − qnAu‖Yn .︸ ︷︷ ︸
→‖Au′−Au‖Y <‖A‖L(X,Y )·ε

Thus we have that
lim
n→∞

‖Anun − qnAu‖Yn ≤ (C + ‖A‖L(X,Y ))ε,

and since A ∈ L(X,Y ) is bounded and ε > 0 was chosen arbitrary, it follows that Anun
Q→ Au.

Thus, we have that An
PQ→ A by definition.

Remark 2.9 (On different terminologies). The notion of discrete convergence of linear operators
An

P→ A follows the work of Stummel [Stu70]. In the literature, one also finds the terminology
An approximates A, which is defined to be the case if condition (ii) of Lemma 2.8 is fulfilled:

‖Anpnu− qnAu‖Yn → 0 as n→∞.

Thus, both terminologies are equivalent if ‖An‖L(Xn, Yn) ≤ C, which is satisfied when Xn and
Yn are finite dimensional. We also note that in the context of finite element methods, we would
rather call the above property asymptotic consistency.

In the following, we will define the notions of stable and regular convergence. For this, we
assume that An

PQ→ A for an operator A ∈ L(X,Y ).

Definition 2.10. The sequence (An)n∈N, An ∈ L(Xn, Yn) is called stable, if there exist con-
stants C, n0 > 0 such that the inverse operators A−1

n ∈ L(Yn, Xn) exist and ‖A−1
n ‖L(Yn,Xn) ≤ C

for all n ≥ n0.

Definition 2.11. The sequence (An)n∈N, An ∈ L(Xn, Yn) is called regular, if ‖un‖Xn ≤ C and
the Q-compactness of (Anun)n∈N imply that (un)n∈N is P-compact.
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The notion of regularity is more general than stability. For instance, we will show in Lemma
2.13 that for a bijective operator A, the regularity of approximations (An)n∈N implies their
stability. However, we might also want to consider a non-bijective operator A, for example,
if we are approximating eigenvalue problems [Hal21]. The following lemma shows that the
stability of a sequence (An)n∈N which approximates an operator A, immediately implies the
injectivity of A. This means, in particular, that an approximation of an operator A that is not
injective cannot be stable. As such, the notion of stability is not meaningful when considering
non-bijective operators, while the notion of regularity still is.

Lemma 2.12. If An
PQ→ A and (An)n∈N is stable, then there exits γ > 0 such that

‖Au‖Y ≥ γ‖u‖X ∀u ∈ X. (2.10)

In particular, this means that A is semifredholm with ker(A) = {0} and ind A ≤ 0.

Proof. We follow the argumentation of [Vai76, Chap. 2, Thm. (14)].
Since pnu

P→ u and Anpnu
Q→ Au, we have that

‖Au‖Y = lim
n→∞

‖Anpnu‖Yn ≥ lim
n→∞

1

‖A−1
n ‖L(Yn,Xn)

‖pnu‖Xn ≥ γ lim
n→∞

‖pnu‖Xn = γ‖u‖X ,

(2.11)
where γ = limn→∞

1
‖A−1

n ‖L(Yn,Xn)
> 0 since (An)n∈N is stable. Thus, by Lemma 1.1 it fol-

lows that ker(A) = {0} and ran(A) is closed. Hence, A is semifredholm and ind(A) =
−dim coker(A) ≤ 0.

The following lemma shows the relationship between regularity and stability and the injectivity
and surjectivity of the limit operator A. In particular, we will conclude that if the sequence
(An)n∈N is both stable and regular, then A is bijective. In other words, this means that if we
find a discretization such that (An)n∈N converges stable and regular to A, then the continuous
problem (2.1) is already well-posed.

Lemma 2.13. The following statements are equivalent:

(i) ran(A) = Y , An
PQ→ A, (An)n∈N stable;

(ii) ker(A) = {0}, An
PQ→ A, (An)n∈N regular, An are Fredholm with index 0 (n ≥ n0);

(iii) An
PQ→ A, (An)n∈N is stable and regular.

Proof. We adapt the argumentation from [Vai76, Chap. 2, Thm. (60)].

(i) ⇒ (ii): Lemma 2.12 implies that ker(A) = {0} and since A−1
n ∈ L(Yn, Xn) exist, the

operators An are Fredholm with index zero. It is left to show that (An)n∈N is regular. Let
(un)n∈N be given such that ‖un‖Xn ≤ C and (Anun)n∈N is Q-compact, i.e. there exists a
subsequence N′ ⊂ N such that Anun

Q→ y for some y ∈ Y . We have to show that (un)n∈N is
P-compact. As ran(A) = Y and ker(A) = {0}, A−1 ∈ L(Y,X) exists and we can set u := A−1y.
We calculate

‖un − pnu‖Xn ≤ ‖A−1
n ‖L(Yn,Xn)‖Anun − qny‖Yn + ‖A−1

n ‖L(Yn,Xn)‖Anun − qny‖Yn
≤ C

(
‖Anun − qny‖Yn + ‖Anun − qny‖Yn

)
n∈N′−→ 0,
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since Anun
Q→ y, An

PQ→ A. Thus, we have that un
P→ u, n ∈ N′ and conclude that (An)n∈N is

regular.

(ii)⇒ (iii): Since An are Fredholm with index 0, it suffices to show that ker(An) = {0} for all
n ∈ N since injectivity implies bijectivity. Suppose the operators An are not injective. Then,
we can find a sequence (un)n∈N with ‖un‖Xn = 1 and Anun

Q→ 0. Since (An)n∈N is regular,
(un)n∈N is P-compact, i.e. there exists a subsequence N′ ⊂ N such that un

P→ u for some u ∈ X
with ‖u‖X = 1. However, since An

PQ→ A we have that Anun
Q→ Au and hence Au = 0 which

contradicts the assumption that ker(A) = {0}.
(iii) ⇒ (i): Let y ∈ Y be arbitrary. We have to show that y ∈ ran(A). Choose a sequence
(yn)n∈N such that yn

Q→ y. With un := A−1
n yn, we have that ‖un‖Xn ≤ C and Anxn

Q→ y. Since
(An)n∈N is regular, (un)n∈N is P-compact and hence there exists a subsequence N′ ⊂ N such
that un

P→ u for some u ∈ X. Thus Anun
Q→ Au and by uniqueness of limits, we conclude that

Au = y.

Corollary 2.14. If An
PQ→ A stable and regular, than there exists A−1 ∈ L(Y,X).

Proof. By the previous Lemma 2.13, A is bijective and hence invertible.

Recall from Definition A.3 that we call an operator A ∈ L(X,Y ) compact, if it maps bounded
sets in X to precompact sets in Y . Below, we will define what it means for the (An)n∈N,
An ∈ L(Xn, Yn), to be compact and show that this already implies the compactness of the
limit operator A ∈ L(X,Y ) under mild conditions.

Definition 2.15 (Compactness). The sequence (An)n∈N, An ∈ L(Xn, Yn) is called compact,
if for every bounded sequence (un)n∈N, un ∈ Xn, ‖un‖Xn ≤ C, the sequence (Anun)n∈N is
Q-compact.

Theorem 2.16. Let An
PQ→ A and (An)n∈N be compact. If Y is separable, then the operator A is

compact.

Proof. We refer to [Vai76, Chap. 2, Thm. (49) and (26)].

At this point, we return to the motivating Question 2.1. Recall that we want to identify
conditions on X, Y , Xn, Yn, A, An, f and fn such that if the continuous problem (2.1) has
a unique solution u ∈ X, the discrete problems (2.2) have unique solutions un and (un)n∈N
converges to u. As before, we assume that X and Y are Banach spaces and (Xn)n∈N and
(Yn)n∈N are sequences of Banach spaces such that there exist systems of operators P = (pn)n∈N
and Q = (Qn)n∈N such that (2.6) holds true. Furthermore, we assume that A ∈ L(X,Y ) is
a bounded linear operator and (An)n∈N, An ∈ L(Xn, Yn), is a sequence of bounded linear
operators and that f ∈ Y , fn ∈ Yn are such that fn

P→ f . Then, we can formulate the following
theorem to answer Question 2.1.

Theorem 2.17. Suppose that ker(A) = {0} and that the sequence (An)n∈N consists of Fredholm
operators with index zero. If An

PQ→ A and (An)n∈N is regular, then there exists a unique solution
u ∈ X to (2.1). Furthermore, there exists n0 ∈ N and constants C1, C2 > 0 such that there exists
a unique solution un ∈ Xn to (2.2) for all n ≥ n0 and un

P→ u. There holds the estimate

C1‖Anpnu− fn‖Yn ≤ ‖un − pnu‖Xn ≤ C2‖Anpnu− fn‖Yn . (2.12)
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Proof. We follow the argumentation of [Vai76, Chap. 3, Thm. (3)].
By Lemma 2.13, the inverse operator A−1 ∈ L(Y,X) exists and for n sufficiently large,
A−1
n ∈ L(Yn, Xn) exist and ‖A−1

n ‖L(Yn,Xn) ≤ C2 for some constant C2 > 0. Thus, the problems

(2.1) and (2.2) are uniquely solvable. Since An
PQ→ A, Lemma 2.8 implies that

‖An‖L(Xn,Yn) ≤
1

C1
(2.13)

for some constant C1 > 0. Furthermore, as An(un − pnu) = fn −Anpnu, we have that

‖Anpnu− fn‖Yn = ‖An(pnu− un)‖Yn ≤
1

C1
‖un − pnu‖Xn ,

‖un − pnu‖Xn = ‖A−1
n An(un − pnu)‖Xn ≤ C2‖Anpnu− fn‖Yn .

(2.14)

Finally, as An
PQ→ A, we have that Anpnu

Q→ Au = f . By assumption, we have that fn
Q→ f and

therefore Anpnu− fn
Q→ 0. Consequently, we have that

‖un − pnu‖Xn ≤ C2‖Anpnu− fn‖Yn → 0 as n→∞, (2.15)

and conclude that un
P→ u.

Remark 2.18. By means of Lemma 2.13, we can formulate the previous theorem analogously with
the assumptions that ran(A) = Y and that (An)n∈N is stable. However, we recall that regularity
is a more general condition than stability, and showing stability is more difficult. Furthermore,
showing the injectivity of the operator A is usually easier than showing its surjectivity. Thus, we
prefer the previous formulation.

2.3 Conforming Galerkin schemes

In this section, we want to show how the previously developed framework can be directly
applied to conforming Galerkin schemes. Abstractly, a Galerkin scheme in a Banach space X is
a sequence of nonzero finite dimensional subspaces (Xn)n∈N, Xn ⊂ X, such that

lim
n→∞

inf
un∈Xn

‖u− un‖X = 0 for all u ∈ X. (2.16)

For more details, we refer to [Zei90a, Chap. 21.13]. In the context of Finite Element Spaces,
the property (2.16) is usually called approximability property. In practice, one usually considers
X to be a Hilbert space. Thus, we restrict the framework from the previous sections to this
case and assume that X = Y . Our main goal is to approximate a linear bounded operator
A ∈ L(X) by a sequence of operators (An)n∈N, An ∈ L(Xn), where (Xn)n∈N is a Galerkin
scheme. This setting is visualized in the diagram in Fig. 2.3.

(X, (·, ·)X) (Xn, (·, ·)Xn)
pn

A An

Figure 2.3: Setting for conforming Galerkin Approximations

Lemma 2.19. Let pn ∈ L(X,Xn) be the orthogonal projection from X to Xn. Then, we have
that

lim
n→∞

‖pnu‖X = ‖u‖X for all u ∈ X.
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Proof. Let u ∈ X be arbitrary. We use the characterization of the orthogonal projection pn as
the best approximation of u [Zei90a, Prop. 21.44]:

‖u− pnu‖X = inf
vn∈Xn

‖u− vn‖X .

Thus, the approximability property (2.16) yields limn→∞ ‖u− pnu‖X = 0.

Corollary 2.20. Let X be Hilbert, A ∈ L(X) and (Xn)n∈N be a conforming Galerkin scheme.
Then, the sequence (An)n∈N, An := pnA|Xn ∈ L(Xn), where pn ∈ L(X,Xn) is the orthogonal
projection, fulfills An

P→ A.

Proof. Since An and pn are bounded operators, the statement immediately follows from the
previous lemma, since we have for n→∞ that

‖Anpnu− pnAu‖X = ‖pnApnu− pnAu‖X ≤ ‖pn‖L(X,Xn)‖A‖L(X)‖pnu− u‖X → 0.

The previous two statements show that the framework developed in the previous sections can
be directly applied to conforming Galerkin schemes.

Corollary 2.21. Let (Xn)n∈N, Xn ⊂ X, be a conforming Galerkin scheme such that (2.16) holds
true. Further, let A ∈ L(X) and (An)n∈N, An ∈ L(Xn), be defined through An := pnA|Xn . Then
(Xn, pn, An) is a discrete approximation scheme of (X,A).

Example 2.1 (H1-conforming Finite Element Space). Let D ⊂ Rd be a bounded Lipschitz
domain and (Tn)n∈N be a sequence of shape regular triangulations of D. For k ≥ 1, we define

Xn := {v ∈ L2(D) : v|τ ∈ Pk(τ) ∀τ ∈ Tn} ∩H1(D) ⊂ H1(D).

Then Xn fulfills the approximability property (2.16) [EG21b, Sec. 26.3.3] and we can apply the
previous corollary.

To summarize, the previous results show that whenever we are considering a conforming
Galerkin scheme with finite-dimensional subspaces that fulfill the approximation property
(2.16), then (Xn, pn, pnAn|Xn), where pn ∈ L(X,Xn) is the orthogonal projection onto Xn,
is always a discrete approximation scheme of (X,A). Furthermore, we note that since the
spaces Xn are finite-dimensional, the operators An are Fredholm with index zero, cf. Lemma
A.21. Thus, we can apply the convergence theorem 2.17 derived in the previous section to
show the following lemma.

Lemma 2.22. Let X be Hilbert and (Xn)n∈N be a conforming Galerkin scheme. Furthermore, let
pn ∈ L(X,Xn) denote the orthogonal projection from X to Xn and let A ∈ L(X) be injective.
Define An := pnAn|Xn such that An ∈ L(Xn). If (An)n∈N is regular, then the continuous problem
(2.1) has a unique solution u ∈ X for all f ∈ X. Furthermore, with setting fn := pnf ∈ Xn,
there exists an index n0 > 0 such that the discrete problem (2.2) has a unqiue solution un ∈ Xn

for all n > n0 and un
P→ u. There holds the estimate

‖u− un‖X . inf
vn∈Xn

‖u− vn‖X . (2.17)
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Proof. From Thm. 2.17, the existence of a unique solution u ∈ X to (2.1) and unique solutions
un ∈ Xn to (2.2) for n > n0 such that un

P→ u immediately follow. For the estimate, we
consider as in [HLS22, Lem. 2]

‖u− un‖X ≤ ‖u− pnu‖X + ‖pnu− un‖X ≤ ‖u− pnu‖X + ‖A−1
n (Anpnu−Anun)‖X

≤ ‖u− pnu‖X + sup
m>n0

‖A−1
m ‖L(Xm)‖pnApnu− pnAu‖X

≤
(

1 + sup
m>n0

‖A−1
m ‖L(Xm)‖A‖L(X)

)
‖u− pnu‖X

= C inf
vn∈Xn

‖u− vn‖X .

In the third line, we use that Anun = pnf = pnAu, in the fourth that ‖pn‖L(Xn) ≤ 1 and in the
final line, we use the characterization of the orthogonal projection as the best approximation.

Remark 2.23 (Convergence rates). When we consider conforming finite element approximations,
the approximability property (2.16) usually follows from the existence of a suitable interpolation
operator I : X → Xn such that

‖u− Iu‖X . hα‖u‖X ,

where α > 0 and h is the mesh size. In this case, Lemma 2.22 immediately yields yields a
convergence rate of O(hα). For instance, if we consider H1-conforming finite elements as in
Example 2.1, we have that for all u ∈ X ∩H1+s(D)

‖u− Iu‖H1(D) . hs‖u‖H1+s(D).

Altogether, we conclude that the framework of discrete approximation schemes can be
conveniently applied to conforming Galerkin approximations. We have shown that with
pn ∈ L(X,Xn) being the orthogonal projection onto Xn, (Xn, pn, pnA|Xn) always constitutes
a discrete approximation scheme of (X,A). Furthermore, to conclude both the continuous
and the discrete well-posedness, as well as the convergence of the discrete solution to the
continuous one, we only have to show injectivity of A and regularity of (An)n∈N. Let us stress,
however, that proving regularity is not a trivial task. In the next section, we will therefore
specify conditions that allow us to infer regularity.

Remark 2.24 (Nonconforming schemes). For nonconforming schemes where Xn 6⊂ X, the
situation is more complicated since we cannot choose pn to be the orthogonal projection. Conse-
quently, the properties (2.3) and An

P→ A do not immediately follow and have to be established
individually. Nevertheless, the framework is still applicable, as we will demonstrate in sections
3.4.1, 5.2.2, or 6.2.

2.4 T-compatibility

In this section, we review the concept of T-compatibility [Hal21], which connects discrete
approximation schemes with the concept of weak T-coercivity. Recall from Section 1.4 that we
call an operator A ∈ L(X) T -coercive if there exists a bijective operator T ∈ L(X) such that
T ∗A is coercive and weakly T-coercive if there exists a compact operator K ∈ L(X) such that
T ∗A+K is coercive.
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2.4.1 Conforming Galerkin approximations

First of all, we consider conforming Galerkin approximations. Let (Xn)n∈N, Xn ⊂ X, be a
sequence of closed subspaces of X and pn ∈ L(X,Xn) be the orthogonal projection from X to
Xn. We define the following discrete norm on L(Xn) that can be applied to both T ∈ L(X)
and T ∈ L(Xn) through

‖T‖n := sup
un∈Xn\{0}

‖Tun‖X
‖un‖X

= ‖T‖L(Xn,X) = ‖TPn‖L(X),

In the case that the operator A ∈ L(X) is T-coercive, the condition that ‖T −Tn‖n → 0 implies
that the sequence of Galerkin approximations (An)n∈N is uniformly Tn-coercive as Ciarlet
[Cia12, Corollary 1] showed with the following lemma.

Lemma 2.25. Let A ∈ L(X) be T-coercive and (An)n∈N, An ∈ L(Xn), be a sequence of conform-
ing Galerkin approximations s.t. Xn ⊂ X. Assume that there exists a sequence of index zero
Fredholm operators Tn ∈ L(Xn) such that

lim
n→∞

‖T − Tn‖n = 0.

Then the sequence (An)n∈N is uniformly Tn-coercive.

Proof. Adapted from [Cia12, Corollary 1]. Let un ∈ X. Then, we have that

|〈Anun, Tnun〉X | = |〈Aun, Tnun〉X + 〈(An −A)un, Tnun〉X |
= |〈Aun, Tun〉X − 〈Aun, (T − Tn)un〉X + 〈(An −A)un, Tnun〉X |
≥ |〈Aun, Tun〉X | − |〈Aun, (T − Tn)un〉X | − |〈(An −A)un, Tnun〉X |
≥ (α− ‖A‖L(X)‖T − Tn‖n − ‖An −A‖L(X)‖Tn‖L(Xn))‖un‖2Xn ,

where α > 0 is the T-coercivity constant of A.

In the following, we define T-compatibility and show that T-compatible approximations of
weakly T-coercive operators are regular, which enables us to apply Thm. 2.17.

Definition 2.26 (T-compatibility). Let A ∈ L(X) be weakly T-coercive. We call the sequence
of Galerkin approximations (An)n∈N T-compatible if (An)n∈N is a sequence of index zero
Fredholm operators and there exists a sequence of index zero Fredholm operators (Tn)n∈N,
Tn ∈ L(Xn) such that ‖T − Tn‖n → 0 as n→∞.

Theorem 2.27. Let A ∈ L(X) be weakly T-coercive and (An)n∈N be a T-compatible Galerkin
approximation. Then (An)n∈N is regular.

Proof. We will briefly sketch the proof. For more details, we refer to the proof of [Hal21,
Thm. 1]. First, we note that it can be shown that there exists a constant C̃ > 0 such that
‖Tn‖L(Xn), ‖T−1

n ‖L(Xn) ≤ C̃. Now, let (un)n∈N, un ∈ Xn, be such that ‖un‖Xn ≤ C for some
constant C independent of n and (Anun)n∈N is compact. For an arbitrary subsequence N′ ⊂ N,
we choose N′′ ⊂ N′ and f ∈ X such that limn∈N′′ ‖Anun − f‖Xn = 0. Let K ∈ L(X) be
compact such that AT + K is coercive. Then, we compute with Pn : X → Xn being the
orthogonal projection onto Xn that

Anun = AnTnT
−1
n un = PnATnT

−1
n un

= PnATT
−1
n un + PnA(Tn − T )T−1

n un

= Pn(AT +K)T−1
n un − PnKT−1

n un + PnA(Tn − T )T−1
n un.
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We further estimate that

‖PnA(Tn − T )T−1
n ‖L(Xn) ≤ C̃C‖A‖L(X)‖T − Tn‖L(Xn)

n→∞−→ 0.

As K is compact, there exists N′′′ ⊂ N′′ and g ∈ X such that limn→∞ ‖PnKT−1
n un − g‖X = 0

and since AT + K is coercive, it follows that limn→∞ ‖T−1
n un − (AT + K)−1(f + g)‖X = 0.

Thus, since (Tn)n∈N is stable, it follows that limn→∞ ‖un − T (AT +K)−1(f + g)‖X = 0 and
we conclude that (un)n∈N is compact.

2.4.2 Weak T-compatibility

The T-compatibility condition introduced in the previous section is not applicable when we
consider nonconforming Galerkin approximations where for instance Xn 6⊂ X. In this case,
we cannot evaluate the operators T and Tn for functions in Xn and X, respectively, and,
in general, the norm ‖ · ‖Xn is not well-defined on X. To solve such issues, a weaker T-
compatibility condition was introduced by Halla et al. [HLS22]. The authors showed that
instead of requiring ‖T −Tn‖L(Xn,X) → 0 as n→∞, it suffices to ask for Tn

P→ T with (Tn)n∈N

being stable, Bn
P→ B with (Bn)n∈N is stable and B bijective, and AnTn = Bn + Kn. We

note that the weak T-compatibility condition can also be applied to conforming discretizations
where Definition 2.26 is too strong, as is the case for the H1-conforming discretization in
[HLS22].

Theorem 2.28. Assume there exists a constant C > 0, sequences (An)n∈N, (Tn)n∈N, (Bn)n∈N and
(Kn)n∈N and B ∈ L(X) such that the following holds: for each n ∈ N, An, Tn, Bn,Kn ∈ L(Xn),
‖Tn‖L(Xn),‖T−1

n ‖L(Xn), ‖Bn‖L(Xn), ‖B−1
n ‖L(Xn) ≤ C, B bijective, (Kn)n∈N compact and

lim
n→∞

‖Tnpnu− pnTu‖Xn = 0 and lim
n→∞

‖Bnpnu− pnBu‖Xn = 0 for each u ∈ X,

and
AnTn = Bn +Kn.

Then (An)n∈N is regular.

Proof. We briefly sketch the argument from [HLS22, Thm. 3]. Let (un)n∈N, un ∈ Xn, be
uniformly bounded and (Anun)n∈N be compact. For an arbitrary subsequence N′ ⊂ N, we
choose N′′ ⊂ N′ and f ∈ X such that Anun

P→ f . Since (Kn)n∈N is compact and T−1
n is

bounded, we can choose N′′′ ⊂ N′′ and g ∈ X such that KnT
−1
n un

P→ g. We want to show that
un

P→ TB−1(f − g). To this end, we compute that

‖un−pnTB−1(f −g)‖Xn ≤ ‖un−TnB−1
n (f −g)‖Xn +‖pnTB−1(f −g)−TnB−1

n pn(f −g)‖Xn .

Since ‖Tn‖L(Xn), ‖B−1
n ‖L(Xn) ≤ C and Bn = AnTn −Kn, we estimate that

‖pnTB−1(f − g)− TnB−1
n (f − g)‖Xn ≤ C2‖BnT−1

n un − pn(f − g)‖Xn
= C2‖Anun −KnT

−1
n un − pn(f − g)‖Xn

≤ C2(‖Anun − pnf‖Xn + ‖KnT
−1
n un − png‖Xn),

where the right-hand side tends to zero as Anun
P→ f and KnT

−1
n un

P→ g. Furthermore, we
have that

‖pnTB−1(f − g)− TnB−1
n pn(f − g)‖Xn ≤ ‖pnTB−1(f − g)− TnpnB−1(f − g)‖Xn

+ ‖TnpnB−1(f − g)− TnB−1
n pn(f − g)‖Xn

≤ ‖pnTB−1(f − g)− TnpnB−1(f − g)‖Xn
+ C2‖BnpnB−1(f − g)− pn(f − g)‖Xn ,
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where the right-hand side converges to zero as Tn
P→ T and Bn

P→ B by assumptions. Thus, it
follows that limn∈N′′′ ‖un − pnTB−1(f − g)‖Xn = 0 which shows that (An)n∈N is regular.

2.5 Summary

To conclude this chapter, let us briefly summarize the strategy to show continuous and discrete
well-posedness based on the previously discussed concepts. The first step is to show that the
assumptions required to apply the framework are fulfilled. In particular, one has to show
the existence of a bounded linear pn ∈ L(X,Xn) such that limn→∞ ‖pnu‖Xn = ‖u‖X for all
u ∈ X and that An

P→ A and fn
P→ f . Then, as displayed in Fig. 2.4, it suffices to show that

A is either T-coercive or weakly T-coercive and injective to establish well-posedness on the
continuous level.

∃!u ∈ X : Au = f

well-posedness

T-coercivity
weak T-coercivity

+ injectivity

Thm. 1.7& Lem. 1.13
Cor. 1.17

Figure 2.4: Overview of strategies to show well-posedness on the continuous level.

To show stability on the discrete level, we have to show that the sequence of approximations
(An)n∈N is regular. To this end, we can either apply the T-compatibility condition or the weak
T-compatibility condition described in the previous section, cf. Fig. 2.5.

∃n0 > 0 : ∃!un ∈ Xn : Anun = fn∀n > n0

s.t. limn→∞ ‖pnu− un‖Xn = 0

stability

regularity

T-compatibility weak T-compatibility

Thm. 2.27 Thm. 2.28

Thm. 2.17

Figure 2.5: Overview of strategies to show stability on the discrete level.
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CHAPTER 3

Application to the Helmholtz problem

In this section, we want to apply the previously introduced framework to the Helmholtz
problem with Dirichlet boundary conditions, which is a simple model problem that involves a
noncoercive bilinear form. Here, we will briefly introduce the model problem and discuss the
noncoerciveness of the bilinear form in more detail. We show that the problem is T-coercive
[Cia12] and analyze a conforming Galerkin approximation using discrete approximation
schemes. We repeat the latter for a discontinuous Galerkin discretization. Finally, we introduce
the concept of hybridization and perform numerical experiments.
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3.1 Model problem & Non-coerciveness

The Helmholtz equation is a common model problem for wave propagation. In the following,
let D ⊂ Rd, d = 2, 3, be a bounded Lipschitz domain. For a source term f ∈ L2(D) and a
wave number κ ∈ R>0, we want to find u : D → R such that

−∆u− κ2u = f in D, u = 0 on ∂D. (3.1)

Note that we consider Dirichlet boundary conditions here instead of the more natural Robin
boundary conditions, which are used when truncating an unbounded domain where radiation
conditions at infinity, for example, the Sommerfeld radiation condition, are imposed. The
weak formulation of (3.1) is given by

Find u ∈ H1
0 (D) s.t. a(u, v) = f(v) for all v ∈ H1

0 (D), (3.2)

where we define the bilinear form a(·, ·) and the linear form f(·) by

a(u, v) :=

∫
D

(∇u · ∇v − κ2uv)dx and f(v) :=

∫
D
fvdx. (3.3)

for u, v ∈ H1
0 (D). While a(·, ·) is bounded by the Cauchy-Schwarz inequality, the Helmholtz

problem is a classical example of a noncoercive problem [EG21b, Chap. 35]. Consequently, the
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Lax-Milgram Lemma 1.4 is not applicable. In the next section, we will demonstrate how the
well-posedness of the problem can be proved using T-coercivity. Before we delve deeper into
the analysis, let us first discuss the noncoerciveness of the bilinear form a(·, ·) in more detail. By
means of Remark A.17 to Thm. A.16, we know that there exists an orthonormal basis (e`)`∈N
of L2(D) consisting of eigenvectors of the negative Laplace operator with corresponding
eigenvalues (λ`)`∈N. We order the eigenpairs by increasing values of the eigenvalues λ`.
Thus, for every u ∈ H1

0 (D), we can find a unique representation u =
∑

`∈N u`e`, where
u` := (u, e`)L2(D). Furthermore, we can express

‖u‖2L2(D) =
∑
`∈N

u2
` and ‖∇u‖2L2(D) =

∑
`∈N

λ`u
2
` .

In this basis, we can write the bilinear form a(·, ·) defined by (3.3) as

a(u, v) =
∑
`∈N

(λ` − κ2)u`v`,

where u, v ∈ H1
0 (D) are represented as u =

∑
`∈N u`e` and v =

∑
`∈N v`e`. Testing the bilinear

form with an eigenvector e` for some ` ∈ N yields a(e`, e`) = (λ` − κ2). Thus, for ` ∈ N such
that λ1 < κ2 < λ`, we have that

(λ` − κ2) = a(e`, e`) > 0 > a(e1, e1) = (λ1 − κ2), (3.4)

and thus the bilinear form cannot be coercive. In particular, if κ2 = λ` for some ` ∈ N, the
kernel of a(·, ·) is non-trivial. Therefore, we will assume that κ2 6= λ`, ` ∈ N, in the following.

3.2 T-coercivity

In this section, we will discuss how the concept of T-coercivity, cf. Definition 1.11, can be used
to prove the well-posedness of the Helmholtz problem (3.2). Before we elaborate, let us stress
that the well-posedness of the Helmholtz problem can also be shown with other techniques,
e.g., through a compact perturbation analysis [SBH19, Sec. 8.2] or by utilizing the Fredholm
alternative. However, the Helmholtz problem is a convenient example to demonstrate the
concepts developed in the previous chapters, and the construction of the T -operator itself
demonstrates the idea behind T-coercivity quite well. This and the following section are based
on [Cia12] with some adaptations to fit into the framework of Chapter 2.
In the following, we denote by `max the largest index ` ≥ 0 such that λ` < κ2. We introduce
the following finite-dimensional vector space

W := span0≤`≤`max
(e`) ⊂ H1

0 (D).

Furthermore, let V = W⊥ such that H1
0 (D) = V ⊕W . We denote by PV ∈ L(H1

0 (D), V ),
PW ∈ L(H1

0 (D),W ) the orthogonal projections from H1
0 (D) to V and W respectively. Note

that by construction, PW is of finite rank.

Remark 3.1. If κ2 < λ0, we set `max = −1, W = {0} and PW = 0.

Then, we define the operator T ∈ L(H1
0 (D)) through

T := PV − PW , i.e. Tu = v − w for u = v + w ∈ H1
0 (D). (3.5)

On basis vectors (e`)`∈N, the operator T acts in the following way:

Te` =

{
−e` if 0 ≤ ` ≤ `max,

+e` if ` > `max.
(3.6)
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3.3. Conforming Galerkin Approximation

Intuitively, this construction of the T -operator immediately tackles the origin of the nonco-
erciveness of the bilinear form a(·, ·) as discussed in (3.4), because it flips the sign of the
problematic eigenvectors. In the forthcoming analysis, we will see that this construction
indeed makes the bilinear form T -coercive. Before, let us briefly note that T is bijective by
definition since T 2 = IdH1

0 (D).

Lemma 3.2. The operator A ∈ L(H1
0 (D)) induced by the bilinear form a(·, ·) is T-coercive.

Proof. For u ∈ H1
0 (D), we have by linearity of T

Tu = T
(∑
`∈N

u`e`
)

=
∑
`∈N

u`Te` ⇒ (Tu)` = (Tu, e`)L2(D) =
∑
`∈N

u`(Te`, e`)L2(D).

Since T swaps the sign of all e` with 0 ≤ ` ≤ `max, we have with α := min`∈N{|λ` − κ2|/λ`}

a(u, Tu) =
∑
i∈N

(λi − κ2)ui(Tu)i

=
∑

0≤`≤`max

(κ2 − λ`)u2
` +

∑
`>`max

(λ` − κ2)u2
`

≥ α
∑
`∈N

λ`u
2
` = α‖∇u‖2L2(D).

Since ‖∇v‖L2(D) ' ‖v‖H1(D) on H1
0 (D) due to the Poincaré inequality, cf. Lemma A.32, the

operator T ∗A is coercive on H1
0 (D), i.e. A is T-coercive.

Therefore, we can conclude with Lemma 1.13 and Thm. 1.7 that the Helmholtz problem (3.2)
is well-posed if and only if κ2 6∈ {λ`}`∈N.

Remark 3.3 (Robin boundary conditions). As mentioned before, we consider Dirichlet boundary
conditions for simplicity here. However, we can also apply the frameworks discussed in Chapters 1
and 2 to Robin boundary conditions of the form

∂u

∂n
− iκu = g on ∂D.

In this case, the bilinear form a(·, ·) has an additional boundary term, i.e.

a(u, v) =

∫
D

(∇u · ∇v − κ2uv)dx− iκ
∫
∂D

tr(u) tr(v)ds,

where tr : H1(D) → L2(∂D) is the trace operator. Since the trace operator is compact on
bounded Lipschitz domains [SBH19, Prop. 8.3] as an operator from H1(D) to L2(∂D), the
operator induced by the additional boundary term is compact. Thus, with the same argument as
before, we can show that the operator A induced by a(·, ·) is weakly T-coercive. Furthermore, it
can be shown that the operator is injective [EG21b, Thm. 35.5] and thus, the Helmholtz problem
with Robin boundary conditions is well-posed by Corollary 1.17.

3.3 Conforming Galerkin Approximation

In this section, we want to introduce and analyze a conforming Galerkin discretization of (3.1)
using discrete approximation schemes. Let (Tn)n∈N be sequence of shape regular triangulations
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Chapter 3. Application to the Helmholtz problem

of D such that hn → 0 as n→∞, where hn := maxτ∈Tn hτ and hτ := diam(τ), τ ∈ Tn.
For k ≥ 1 we define the H1-conforming Finite Element Space

Xn := {v ∈ L2(D) : v|τ ∈ Pk(τ) ∀τ ∈ Tn, v|∂D = 0} ∩H1(D) ⊂ H1
0 (D).

Then, the Galerkin approximation to (3.1) is given by

Find un ∈ Xn such that a(un, vn) = f(vn) for all vn ∈ Xn. (3.7)

As before, we denote by A ∈ L(X) the operator induced by the bilinear form a(·, ·). Let PXn ∈
L(X,Xn) be the orthogonal projection from X to Xn. Then, we define An := PXnA|Xn ∈
L(Xn). Since the H1-conforming finite element space fulfills the approximability property, cf.
Example 2.1, we can immediately apply Corollary 2.21 to conclude that (Xn, PXn , An) is a
discrete approximation scheme of (X,A). That is, we know that

lim
n→∞

‖PXnu‖X = ‖u‖X and An
P→ A.

Now, we want to construct a sequence of discrete operators (Tn)n∈N, Tn ∈ L(Xn), that
mirrors the construction of T from (3.5). To this end, we approximate the continuous
eigenpairs (λ`, e`)`∈N with discrete eigenpairs (λ`,n, e`,n)`∈N, e`,n ∈ Xn, i.e., we solve the
discrete eigenvalue problem. By the approximation property (2.16) of Xn, we can find for all
` ∈ N such that λ`max,n < κ2 an index n∗ > 0 such that for all n > n∗

‖e` − e`,n‖X ≤ δ(n), (3.8)

where δ(n) only depends on `max and limn→∞ δ(n) = 0 [Cia12, Sec. 3.2]. We note that with
orthonormalization, we can form a discrete basis of Xn with the approximate eigenfunctions
which we will still denote by (e`,n)`∈N. Then, we define the discrete space

Wn := span0≤`≤`max
(e`,n) (3.9)

and denote by PWn ∈ L(Xn,Wn) the orthogonal projection from Xn onto Wn. Furthermore,
we set Vn = W⊥n such that Xn = Vn ⊕Wn and denote by PVn the orthogonal projection onto
Vn. Then, as in (3.5), we define

Tn := PVn − PWn , i.e. Tnun = vn − wn for all un = vn + wn ∈ Xn. (3.10)

To conclude the well-posedness of the discrete problem, we want to show that the sequence
(An)n∈N is T-compatible. The following lemma serves as a preparation.

Lemma 3.4. It holds that
lim
n→∞

‖PW − PWn‖L(X) = 0. (3.11)

Proof. Let un ∈ Xn. Since Xn ⊂ X, we can write in the continuous eigenbasis (e`)`∈N and in
the discrete eigenbasis (e`,n)`∈N, i.e.

un =
∑
`∈N

(un, e`)L2(D)e` =
∑
`∈N

(un, e`,n)L2(D)e`,n.

Since PW and PWn are orthogonal projections onto W and Wn, respectively, we have that

PWun =
∑

0≤`≤`max

(un, e`)L2(D)e` and PWnun =
∑

0≤`≤`max

(un, e`,n)L2(D)e`,n.
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3.3. Conforming Galerkin Approximation

(Note that the smallness assumption on h ensures that `max = `max,n.) Then,

‖(PW − PWn)un‖X =
∑

0≤`≤`max

‖(un, e`)L2(D)e` − (un, e`,n)L2(D)e`,n‖X

=
∑

0≤`≤`max

‖(un, e`)L2(D)(e` − e`,n)− ((un, e`,n)L2(D) − (un, e`)L2(D))e`,n‖X

.
∑

0≤`≤`max

‖e` − e`,n‖X .

Since ‖e` − e`,n‖X → 0 as n→∞, we have that

lim
n→∞

‖PW − PWn‖L(Xn) = lim
n→∞

sup
un∈Xn,‖un‖X=1

‖(PW − PWn)un‖X = 0.

Lemma 3.5. The sequence (An)n∈N>n∗ of Galerkin approximations is T-compatible.

Proof. By Lemma A.21, the operators An ∈ L(Xn) are Fredholm with index zero and so is Tn,
since it is bijective for all n ∈ N. We note that we can write

T = IdH1
0 (D)−2PW and Tn = IdXn −2PWh

.

Therefore, we have for un ∈ Xn

(T − Tn)un = un − 2PWun − un + 2PWh
un = 2(PWh

− PW )un.

Thus, we have that by Lemma 3.4

‖T − Tn‖n . ‖PW − PWh
‖L(Xn) → 0 as n→∞. (3.12)

Furthermore, due to Lemma 2.25, the sequence (An)n∈N is uniformly T-coercive and thus
Fredholm with index zero.

Therefore, we can invoke Thm. 2.27 to conclude that the sequence (An)n∈N is regular.
Applying Lemma 2.22 yields the following result.

Theorem 3.6. Let κ2 6∈ {λ`}`∈N and let u be the solution to (3.2). Then there exists an index
n0 > 0 such that for all n > max(n0, n

∗), a unique solution un ∈ Xn to (3.7) exists and

‖u− un‖X . inf
vn∈Xn

‖u− vn‖X for all n > n0.

Remark 3.7 (On the smallness assumption on h). A drawback of the previous T-coercivity
argument is that the smallness assumption on the mesh size h is not explicit in terms of the
wave number κ. However, this restriction is practically relevant, as demonstrated in Fig. 3.1.
Intuitively, it makes sense that the smallness assumption on the mesh size depends on the wave
number because the dimension of the discrete space Wn depends on the index `max, which depends
on κ. Using other approaches, for instance, a classical Schatz argument [Sch74; Mel95], this
requirement can be made explicit. For example, Melenk and Sauter [MS11] showed that for the
Helmholtz problem with Robin boundary conditions, cf. Rem. 3.3, on domains with analytic
boundaries, it suffices to assume that

κh

k
≤ C1 and k ≥ C2 log κ

to guarantee the quasi-optimality of the Galerkin approximation. It should be possible to derive
similar mesh size requirements for the T-coercivity argument through a more detailed analysis of
the eigenvalue problem.
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Chapter 3. Application to the Helmholtz problem

Figure 3.1: Conforming Galerkin approximation of the Helmholtz problem for different wave
numbers κ and mesh sizes h: (left) κ = 2 and h = 0.15, (middle) κ = 8 and h = 0.15,
(right) κ = 8 and h = 0.05. In the middle, the mesh size is not small enough to capture the
oscillations.

To conclude the discussion on the H1-conforming Galerkin approximation of (3.1), we apply
standard interpolation results to infer the following convergence rates.

Corollary 3.8 (Convergence rates). Let κ2 6∈ {λ`}`∈N and let u ∈ X ∩H1+s(D), s > 0, be the
unique solution to (3.2). Then, we have that

‖u− un‖X . hs‖u‖H1+s(D).

3.4 Discontinuous Galerkin approximation

Having analyzed a conforming discretization of (3.1), we want to shift our attention to the
nonconforming case. To this end, we introduce a discontinuous Galerkin (DG) formulation
of (3.1). The main idea behind the DG method is to allow for discontinuities across element
interfaces, which offers multiple benefits compared with continuous Galerkin methods (CG).
DG methods are known to be more flexible with regard to underlying mesh, and due to its local
character, the DG method is well-suited for parallelization and adaptive mesh refinements.
Furthermore, DG methods are known to be more stable for convective and diffusive operators
than CG methods, and they preserve conservation properties. However, we note that DG
methods introduce more degrees of freedom than CG methods, cf. Fig. 3.2, which leads to
larger and less sparse linear systems [DE12; Leh10].

(a) Continuous Galerkin (b) Discontinuous Galerkin

Figure 3.2: Degrees of freedom for linear CG and DG FEM in 2D; inspired by [Leh10, Fig.
1.2.1].

In the following, we setX := H2
0 (D), where we note that the additional regularity assumptions

ensure that the terms ∇u · ν are well-defined. In addition to the notation from the previous
section, we denote by Fn the collection of facets in Tn and by F int

n the interior facets. For
k ≥ 1, we set

Xn := Pk,d(Tn) := {v ∈ L2(D) : v|τ ∈ Pk(τ) ∀τ ∈ Tn}. (3.13)
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3.4. Discontinuous Galerkin approximation

Furthermore, we denote by H1(Tn) the broken Sobolev space given by

H1(Tn) := {u ∈ L1(D) : u ∈ H1(τ) for all τ ∈ Tn}.

Remark 3.9 (Interpretation of ∇ on H1(Tn)). As detailed in [DE12, Def. 1.21], we define the
broken gradient ∇h : H1(Tn)→ L2(D) element-wise through

(∇hv)|τ := ∇(v|τ ) for all τ ∈ Tn.

For ease of presentation, we drop the index h and denote the broken gradient as ∇.

In contrast to before, functions in Xn do not have to be continuous across element interfaces
and thus Xn 6⊂ X. For two elements τ1, τ2 ∈ Th such that ∂τ1 ∩ ∂τ2 = F ∈ Fh, we define the
jump and average operator as follows

JuK := u1 − u2, {{u}} :=
1

2
(u1 + u2),

where ui := tr u|τi , i ∈ {1, 2}. We note that there holds JuvK = {{u}}JvK + {{v}}JuK.
To derive a DG formulation, we multiply (3.1) by a test function v ∈ Xn. Then, we apply
partial integration on each element τ ∈ Tn and sum over all elements to obtain∑

τ∈Tn

(∫
∂τ

(−∇u · ν)vds+

∫
τ
∇u · ∇vdx−

∫
τ
κ2uvdx

)
=
∑
τ∈Tn

∫
τ
fvdx

Since every facet appears twice in the sum over all element boundaries, we get with the
definition of the jump operator that

−
∑
τ∈Tn

∫
∂τ

(∇u · ν)vds = −
∑
F∈Fh

∫
F
J∇u · νvKds = −

∑
F∈Fh

∫
F

({{∇u · ν}}JvK + J∇u · νK{{v}})ds

The second term can be dropped without affecting consistency since it vanishes for the
continuous solution u. Usually, one adds the consistent term −

∫
F J∇v · νKJuKds to symmetrize

the formulation. If we add a stabilization term sh(·, ·) defined as

sSIP
h (u, v) =

∑
F∈Fn

α

hF

∫
F
JuKJvKds, (3.14)

where α > 0 is a penalty parameter that has to be chosen appropriately, we would obtain the
well-known symmetric interior penalty (SIP) penalty method:

aDG,SIP
n (u, v) :=

∑
τ∈Tn

∫
τ
∇u · ∇v − κ2uvdx

−
∑
F∈Fn

(∫
F
JuK{{∇v · ν}}+ {{∇u · ν}}JvKds

)
+ sSIP

h (u, v).

(3.15)

In the perspective of treating Galbrun’s equation, however, we want to avoid choosing the
penalty parameter α. Therefore, we use a different stabilization term based on lifting operators,
which was introduced by Bassi, Rebay, and co-authors [BR97; Bas+97]. We refer to [DE12,
Chapter 4.3] for an overview, but note that we will follow the opposite sign convention by
Buffa and Ortner [BO08]. For a facet F ∈ Fh and an integer l ∈ N, we define the local lifting
operator rlF : Xn → [Pl(Tn)]d through∫

D
rlFunψndx = −

∫
F
JunK · ν{{ψn}}ds for all ψn ∈ [Pl(Tn)]d.
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Chapter 3. Application to the Helmholtz problem

Note that the support of rlF is local in the sense that

supp(rlF ) = τ1 ∪ τ2, where τ1, τ2 are s.t. τ1 ∩ τ2 = F.

We define the global lifiting operatorRln : L2(Fn)→ [Pl(Tn)]d throughRln(un) =
∑

F∈Fn r
l
F (un).

Lemma 3.10 (Bound on the global lifting operator). For all u ∈ H1(Tn), it holds that

‖Rln(u)‖L2(D) .
∑
F∈Fn

h
−1/2
F ‖JuK‖L2(F ).

Proof. The statement follows directly from the discrete trace inequality A.14, see e.g. [BO08,
Lem. 7].

Furthermore, we define a discrete gradient Gln : H1(Tn)→ L2(D) through

Gln(v) = ∇v +Rln(v). (3.16)

Then, we define the lifting stabilized (LS) DG-bilinear form aDG
n (·, ·) in the following way

aDG
n (u, v) :=

∑
τ∈Tn

∫
τ
Gln(u)Gln(v)− κ2uvdx

=
∑
τ∈Tn

∫
τ
∇u · ∇vdx+

∫
τ
∇v ·Rln(u)dx+

∫
τ
∇u ·Rln(v)dx+ sh(u, v),

(3.17)

where the stabilization term sh(u, v) is given by

sh(u, v) =
∑
τ∈Tn

∫
τ
Rln(u) ·Rln(v)dx. (3.18)

Then, the LS-DG scheme reads as: Find un ∈ Xn s.t.

aDG
n (un, vn) = f(vn) for all vn ∈ Xn. (3.19)

Remark 3.11. The lifting stabilization term (3.18) is in general weaker than the SIP stabilization
term (3.14). For the local lifting operator, it can be shown that ‖JunK‖2L2(F ) . h1/2‖rlF (un)‖2L2(D)

for all un ∈ Xn and F ∈ Fn, cf. [Lew+04, Lem. 3.1]. This estimate, however, does not necessarily
hold for the global lifting operator Rln, see for instance the counterexample in [JNS16].

Remark 3.12. The discrete gradient defined by (3.16) can be interpreted as a distributional
gradient on the broken Sobolev space H1(Tn), which acts on ϕ ∈ C∞c (D)d through (cf. [BO08,
Sec. 5])

〈Du,ϕ〉 =

∫
D
∇u · ϕdx−

∫
Γint

JuK · ϕds.

3.4.1 Interpretation as discrete approximation scheme

In this section, we will show how the DG scheme defined in the previous section can be
interpreted as a discrete approximation scheme. To this end, we define the following scalar
product on the discrete space Xn:

(un, vn)Xn := (un, vn)L2(D) + (Glnun, G
l
hvn)L2(D). (3.20)
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3.4. Discontinuous Galerkin approximation

Furthermore, we denote by ‖ · ‖Xn := (·, ·)1/2
Xn

the norm induced by the scalar product. Since
the trace of H1 functions is well-defined, we can apply the jump operator J·K to functions in X.
In particular, we have that JuK = 0 for all u ∈ X and thus Gln(u) = ∇u. Therefore, the scalar
product (·, ·)Xn and the norm ‖ · ‖Xn can be applied to functions in X, even though we have
that Xn 6⊂ X.
Now, we define a projection operator pn ∈ L(X,Xn). For u ∈ X, let pnu ∈ Xn be the solution
to

(pnu, vn)Xn = (u, vn)L2(D) + (∇u,Glnvn)L2(D) = (u, vn)Xn for all vn ∈ Xn. (3.21)

We note that pn is essentially an orthogonal projection onto Xn. Indeed, we have that
pn ∈ L(X,Xn) with ‖pn‖L(X,Xn) ≤ 1, since

‖pnu‖2Xn = (u, pnu)Xn ≤ ‖u‖X‖pnu‖Xn =⇒ ‖pn‖L(X,Xn) = sup
u∈X\{0}

‖pnu‖Xn
‖u‖X

≤ 1.

Furthermore, we denote by A ∈ L(X) the operator induced by the continuous bilinear for
a(·, ·) and by ADG

n ∈ L(Xn) the operator induced by the discrete bilinear form aDG
n (·, ·). The

setup is visualized in Fig. 3.3.

X = H1
0 (D) Xn = Pk(Tn)

‖ · ‖X , ‖ · ‖Xn ‖ · ‖Xn

pn
A ADG

n

Figure 3.3: Set up.

In the following, we will show that (Xn, pn, A
DG
n ) constitutes a discrete approximation scheme

of (X,A), i.e., that for all u ∈ X, ‖pnu‖Xn → ‖u‖X as n→∞ and ADG
n

P→ A. In the following,
we denote by πkτ : Hs(τ)→ Pk(τ), s > 1/2, the elementwise L2-interpolation operator and by
πn : Hs(D)→ Xn, s > 1/2, its global version defined by πn|τ := πkτ , τ ∈ Tn.

Lemma 3.13. For all u ∈ X, we have that ‖u− pnu‖Xn ≤ ‖u− πnu‖Xn .

Proof. Since the definition of pn yields

‖πnu− pnu‖2Xn = (πnu− u, πnu− pnu)Xn ≤ ‖u− πnu‖Xn‖πnu− pnu‖Xn ,

the triangle inequality gives the claim.

Corollary 3.14. For each u ∈ H1+s(D), s > 0, it holds that ‖u− πnu‖Xn . hsn‖u‖H1+s(D).

Proof. The claim follows from

‖Gln(u− πnu)‖L2(D) ≤ ‖∇(u− πnu)‖L2(D) + ‖Rlnπnu‖L2(D)

together with standard interpolation results, Lemma 3.10, and JuK = 0.

Lemma 3.15. For u ∈ X, we have that limn→∞ ‖u− pnu‖Xn = 0.
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Proof. Let u ∈ X. Since X = H2
0 (D) = W 2,2

0 (D) := C∞c (D)
‖·‖W2,2 , we can find for each ε > 0

a ũ ∈ C∞c (D) such that ‖u− ũ‖X < ε. The triangle inequality yields

‖u− pnu‖Xn ≤ ‖u− pnũ‖Xn + ‖pnu− pnũ‖Xn
≤ ‖ũ− pnũ‖Xn + ‖pnu− pnũ‖Xn + ‖u− ũ‖X
≤ ‖ũ− pnũ‖Xn + 2ε,

since the definition of pn and an application of Cauchy-Schwarz yields ‖pn(u − ũ)‖Xn ≤
‖u− ũ‖X . Using the Lemma 3.13 and Corollary 3.14, we have that limn→∞ ‖ũ− pnũ‖Xn = 0.
Therefore, we conclude that

lim
n→∞

sup ‖u− pnu‖Xn ≤ 2ε.

Since ε > 0 was arbitrary, the claim follows.

Lemma 3.16. For all u ∈ X, we have that limn→∞ ‖pnu‖Xn = ‖u‖X .

Proof. Since Glnu = ∇u for u ∈ X, we have that ‖u‖Xn = ‖u‖X . Thus, we have that

‖pnu‖2Xn = (pnu, pnu)Xn = (u, pnu)Xn = ‖u‖2X + (u, pnu− u)Xn . (3.22)

Apply Cauchy-Schwarz on the second term and using that limn→∞ ‖u− pnu‖Xn = 0 yields the
claim.

To show that ADG
n

P→ A, we require the following compactness result for the discrete gradient.

Lemma 3.17. Let (un)n∈N, un ∈ Xn, be such that supn∈N ‖un‖Xn < ∞. Then, there exists

u ∈ X and a subsequence N′ ⊂ N such that un
L2

⇀ u and Glnun
L2

⇀ ∇u.

Proof. See [BO08, Thm. 5.2].

Lemma 3.18. For each u ∈ X, we have that limn→∞ ‖ADG
n pnu− pnAu‖Xn = 0.

Proof. Since Xn is a Hilbert space, we can find for each un ∈ Xn an element ũn such that

‖un‖Xn = sup
u′n∈Xn
‖u′n‖Xn=1

|(un, u′n)Xn | ≤ |(u, ũn)Xn |+ 1/n.

Thus, for every u ∈ X we can choose (un)n∈N, un ∈ Xn with ‖un‖Xn = 1 such that

‖ADG
n pnu− pnAu‖Xn ≤ |(ADG

n pnu− pnAu, un)Xn |+ 1/n.

For an arbitrary subsequence N′ ⊂ N, we utilize Lemma 3.17 to find a subsubsequence N′′ ⊂ N′

such that un
L2

⇀ u′, Glnun
L2

⇀ ∇u′ for some u′ ∈ X. The definition of pn yields

lim
n∈N′′

(pnAu, un)Xn = lim
n∈N′′

(Au, un)Xn = (Au, u′)X .

Furthermore, using the definition of ADG
n , we compute

(ADG
n pnu, un)Xn = aDG

n (pnu, un) = (Glnpnu,G
l
nun)L2(D) − κ2(pnu, un)L2(D)

= (pnu, un)Xn − (κ2 + 1)(pnu, un)L2(D)

= (u, un)L2(D) + (∇u,Glnun)L2(D) − (κ2 + 1)(pnu, un)L2(D)

= (∇u,Glnun)L2(D) − κ2(u, un)L2(D) + (1 + κ2)(u− pnu, un)L2(D).
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3.4. Discontinuous Galerkin approximation

Since ‖(1 + κ2)(u − pnu, un)L2(D)| ≤ (1 + κ2)‖u − pnu‖Xn
n∈N′′−→ 0 by Lemma 3.15, we have

that limn∈N′′(A
DG
n pnu, un)Xn = (Au, u′) and therefore

lim
n∈N′′

‖ADG
n pnu− pnAu‖Xn = 0.

Since N′ ⊂ N was arbitrary, the claim is proven.

Thus, we have shown that (Xn, pn, A
DG
n ) indeed constitutes a discrete approximation scheme

of (X,A). In the following section, we use the weak T-compatibility conditions from Thm.
2.28 to show that the approximation scheme is stable.

3.4.2 Convergence analysis

As for the conforming case, we want to mirror the construction of the operator T in (3.5). To
this end, we consider a DG approximation1of the continuous Laplace eigenpairs (λ`, e`)`∈N,
i.e. for each ` ∈ N we want to find λ`,n ∈ K and e`,n ∈ Xn such that

(Glne`,n, G
l
nvn)L2(D) = λ`,n(e`,n, vn)L2(D) for all vn ∈ Xn.

It has been shown [ABP06] that these DG approximations of the eigenpairs converge and thus,
there exists an n∗ > 0 such that

‖e` − e`,n‖Xn ≤ δ(n), lim
n→∞

δ(n) = 0

for all ` ∈ N such that λ`max,n < κ2. As before, we set

Wn := span0≤`≤`max
(e`,n)

and Vn := W⊥n such that Xn := Wn ⊕ Vn. We define the projection PWn : Xn →Wn to be the
orthogonal projection onto Wn and set

Tn := PVn − PWn .

In the following, we show that with this construction, we have that Tn
P→ T and that ADG

n

is uniformly Tn-coercive, which allows us to utilize Thm. 2.28 to show that the sequence
(ADG

n )n∈N is regular. Thus, we can apply the theory of discrete approximation schemes to show
the convergence of the method.

Lemma 3.19. For each u ∈ X, we have that limn→∞ ‖pnPWu− PWnpnu‖Xn = 0.

Proof. We use the continuous and discrete eigenbases to write

u =
∑
`∈N

(u, e`)L2(D)e` and pnu =
∑
`∈N

(pnu, e`,n)L2(D)e`,n.

Since PW and PWn are the orthogonal projections onto W and Wn, respectively, we have that

PWu =
∑

0≤`≤`max

(u, e`)L2(D)e` and PWnpnu =
∑

0≤`≤`max

(pnu, e`,n)L2(D)e`,n.

1For ease of presentation, we will assume that all eigenvalues have algebraic multiplicity one. Otherwise, we
would have to introduce more complex notation, see e.g. [EG21b, Chap. 48].
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The triangle inequality yields

‖pnPWu− PWnpnu‖Xn ≤ ‖pnPWu− PWu‖Xn + ‖PWu− PWnpnu‖Xn ,

where the first term converges to zero by Lemma 3.15. For the second, we have that

‖PWu− PWnpnu‖Xn =
∑

0≤`≤`max

‖(u, e`)L2(D)e` − (pnu, e`,n)L2(D)e`,n‖Xn

=
∑

0≤`≤`max

‖(u, e`)L2(D)(e` − e`,n) + ((pnu, e`,n)L2(D) − (u, e`)L2(D))e`,n‖Xn

Since ‖e` − e`,n‖Xn → 0 as n→∞, the first term goes to zero. For the second, consider

(pnu, e`,n)L2(D) − (u, e`)L2(D) = (pnu− u, e`,n)L2(D) + (u, e`,n − e`)L2(D)

≤ ‖u− pnu‖Xn‖e`‖L2(D) + ‖u‖X‖el − e`,n‖Xn

Thus, as ‖e` − e`,n‖Xn → 0 as n→∞ and limn→∞ ‖u− pnu‖Xn = 0, we have that

lim
n→∞

‖pnPWu− PWnpnu‖Xn = 0.

Lemma 3.20. For each u ∈ X, it holds that limn→∞ ‖Tnpnu− pnTu‖Xn = 0.

Proof. It holds that

‖Tnpnu− pnTu‖Xn = ‖(IdXn −2PWn)pnu− pn(IX − 2PW )u‖Xn
= ‖2(pnPWu− PWnpnu)‖Xn .

Applying Lemma 3.19 yields the claim.

In the following, we want to apply Thm. 2.28 to show that the sequence of nonconforming
DG-approximations (ADG

n )n∈N is regular. To this end, we have to prove that ADG
n is Tn-coercive.

Theorem 3.21. The operator ADG
n induced by the bilinear form aDG

n (·, ·) is Tn-coercive.

Proof. Let un ∈ Xn. We have to show that there exists a constant α > 0 s.t.

aDG
n (un, Tnun) ≥ α‖un‖2Xn . (3.23)

Recall that Xn = Vn ⊕Wn s.t. we can write un = vn + wn and Tnun = vn − wn. Then

aDG
n (un, Tnun) = aDG

n (vn + wn, vn − wn)

=

∫
D
Gln(vn + wn) ·Gln(vn − wn)− κ2(vn + wn)(vn − wn)dx

=

∫
D
Gln(vn) ·Gln(vn)− κ2v2

ndx−
∫
D
Gln(wn) ·Gln(wn) + κ2w2

ndx

By construction of Vn and Wn, we can write vn and wn in the discrete eigenbasis (e`,n)`∈N as

vn =
∑

`>`max

u`,ne`,n and wn =
∑

0≤`≤`max

u`,ne`,n.
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Proceeding similar as in the proof of Lemma 3.2,we have with α := min`∈N{|λ`,n − κ2|/(1 +
λ`,n)} that

aDG
n (un, Tun) =

∑
0≤`≤`max

(κ2 − λ`,n)u2
`,n +

∑
`>`max

(λ`,n − κ2)u2
`,n

≥ α
∑
`∈N

(1 + λ`,n)u2
`,n = α‖un‖2Xn .

Thus, ADG
n is indeed Tn-coercive.

We conclude the analysis of the DG discretization of the Helmholtz problem with the following
convergence result.

Theorem 3.22. Let κ2 6∈ {λ`}`∈N and let u ∈ X∩H2+s(D), s > 0, be the solution to (3.2). Then
there exists an index n0 > 0 such that there exists a unique un ∈ Xn such that aDG

n (un, vn) = f(vn)
for all vn ∈ Xn and

‖u− un‖Xn .
(
hmin(1+s,k)
n + hmin(s,l)

n

)
‖u‖H2+s(D).

Proof. Because of Tn
P→ T , ADG

n
P→ A, the T -coercivity of A and the Tn-coercivity of ADG

n ,
we can apply Thm. 2.17 to conclude the existence of a unique discrete solution un ∈ Xn.
Furthermore, with the triangle inequality, we have that

‖u− un‖Xn . ‖u− pnu‖Xn + ‖ADG
n (pnu− un)‖Xn

For the first term, we apply Lemma 3.13 and Corollary 3.14 to obtain

‖u− pnu‖Xn . hmin(1+s,k)
n ‖u‖H2+s(D).

For the second term, we compute

‖ADG
n (pnu− un)‖Xn = sup

u′n∈Xn,‖u′n‖Xn=1
|aDG
n (pnu− un, u′n)|

= sup
u′n∈Xn,‖u′n‖Xn=1

|(∇(pnu− u), Glnu
′
n)− κ2(pnu− u, u′n)

+ (∇u,Glnu′n)− κ2(u, u′n)− (f, u′n)L2(D)|
= O(‖pnu− u‖Xn , n→∞)

+ sup
u′n∈Xn,‖u′n‖Xn=1

|(∇u,Glnu′n)− κ2(u, u′n)− (f, u′n)L2(D)|.

For the first term, we can again apply Corollary 3.14 to obtain the desired convergence rate.
For the second term, we want to utilize that u solves (3.2). In order to apply partial integration
on the discrete gradient Gln, let ψn ∈ [Pl(Tn)]d be an H1-projection of ∇u. Then, we have that

(∇u,Glnu′n) = (ψn, G
l
nu
′
n) + (∇u− ψn, Glnu′n)

and

(ψn, G
l
nu
′
n) =

∑
τ∈Tn

(ψn,∇u′n +Rlnu
′
n)L2(τ) =

∑
τ∈Tn

(ψn,∇u′n)L2(τ) −
∑
F∈Fn

({{ψn}}, Ju′nK · ν)L2(F )

=
∑
τ∈Tn

(ψn,∇u′n)L2(τ) − (ψn, u
′
n · ν)L2(∂τ)

= −(divψn, u
′
n) = (div(∇u− ψn), u′n)− (∆u, u′n).
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Thus, since u solves (3.1), we have that

sup
u′n∈Xn,‖u′n‖Xn=1

|(∇u,Glnu′n)−κ2(u, u′n)−(f, u′n)L2(D)| . ‖∇u−ψn‖H(div) . hmin(s,l)
n ‖u‖H2+s(D).

Remark 3.23 (Choice of l). The previous theorem suggests to choose l = k to obtain quasi-
optimal convergence rates. However, it also might suffice to choose l = k − 1, cf. [EG21b, Rem.
38.18] or [DE12, Chap. 4.3], which is also indicated by numerical results. Thus, it might be
possible to improve the previous theorem to obtain the following convergence rates:

‖u− un‖Xn .
(
hmin(1+s,k)
n + hmin(s,l+1)

n

)
‖u‖H2+s(D).

3.5 Hybrid discontinuous Galerkin method

In this section, we want to conclude the discussion of the Helmholtz problem by considering
a hybrid discontinuous Galerkin (HDG) discretization. The main idea behind hybridization
[CGL09; Leh10] is to introduce additional unknowns that are defined on the facets of the
triangulations, cf. Fig. 3.4. At first glance, this seems to be a counterintuitive approach since
the number of degrees of freedom is increased, which makes the linear system larger and
thus more expensive to solve. However, the introduction of additional facet unknowns allows
us to eliminate the interior degrees of freedom through static condensation, cf. Remark 3.25,
which makes the overall computation more efficient. Furthermore, in contrast to DG methods,
neighboring degrees of freedom do not couple directly, which allows us to assemble the system
matrices element-wise.

(a) Discontinuous Galerkin (b) Hybrid Discontinuous Galerkin

Figure 3.4: Degrees of freedom for linear DG and HDG FEM in 2D; inspired by [Leh10, Fig.
1.2.1].

We start by introducing the HDG formulation of the Helmholtz problem (3.1). In addition to
the notation introduced in section 3.4, we denote by L2(Fn) the space of L2 functions defined
on the facets F ∈ Fn. We consider the continuous space

X := H2(D)× L2(Fn) (3.24)

and the discrete space
Xn := Pk(Tn)× Pk(Fn). (3.25)

We note that it does not suffice to consider H1 as in the previous section because we require
the normal derivative to be well-defined. Thus, we require at least H3/2-regularity, but for
simplicity, we consider H2. In the following, we write u = (uT , uF ) ∈ X. Furthermore, we
define the HDG jump operator J·K through

JuK := uT − uF . (3.26)
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3.5. Hybrid discontinuous Galerkin method

Essentially, we proceed with a similar argumentation as for the derivation of the DG method
in the previous section, but use the HDG-jump operator instead of the DG-jump operator and
instead of summing over all facets, we stay on the element boundaries. Thus, we do not have
average operators involved in the formulation. Consequently, a hybridized SIP method would
be implemented through the following bilinear form

aHDG,SIP
n (un, vn) :=

∑
τ∈Tn

(∫
τ
∇un · ∇vn − κ2unvndx

−
∫
∂τ
∇un · νJvnKds−

∫
∂τ
∇vn · νJunKds+

α

h

∫
∂τ

JunKJvnKds
)
.

(3.27)
However, as in the DG case, we want to avoid choosing the stabilization parameter α > 0 in
(3.27) explicitly and want to use a lifting stabilization instead. Therefore, we reintroduce the
lifting operator defined for the DG scheme in the context of the HDG method. For τ ∈ Tn, we
define the local HDG lifting operator rlτ : Xn → [Pl(Tn)]d through∫

τ
rlτ (un)ψndx = −

∫
∂τ

JunK · νψnds for all ψn ∈ [Pl(Tn)]d.

One advantage of the HDG lifting operator compared to the DG lifting operator is that it is truly
element-local in the sense that supp(rlτ ) = τ , cf. Fig. 3.5. Consequently, the computational
costs associated with implementing the lifting operator are reduced. As before, we define the
global lifting operator Rln =

∑
τ∈Tn r

l
τ . Then, we define the discrete gradient through

Glnun := ∇un +Rlnun.

supp rlF

(a) DG lifting

supp rl∂τ1supp rl∂τ2

(b) HDG lifting

Figure 3.5: Comparison of the support of the DG- and HDG-lifting operators.

With the discrete trace inequality, we have the following result analogously to Lemma 3.10.

Lemma 3.24 (Boundedness of Rln). For all u ∈ H1(Tn), it holds that

‖Rlnu‖L2(D) .
∑
F∈Fn

h
−1/2
F ‖JuK‖L2(∂τ).

Consequently, we define the following lifting stabilized (LS) HDG bilinear form as

aHDG
n (un, vn) :=

∑
τ∈Tn

∫
τ
Gln(un) ·Gln(vn)dx− κ2unvndx, un, vn ∈ Xn. (3.28)

Then, the LS-HDG scheme reads as: Find un ∈ Xn such that

aHDG
n (un, vn) = f(vn) for all vn ∈ Xn. (3.29)
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Remark 3.25 (Static condensation). We can eliminate interior degrees of freedom through static
condensation. In the following, we denote with A ∈ CN×N , N := dimXn, the stiffness matrix
defined through Aij := aHDG

n (ϕj , ϕi), i, j ∈ {1, . . . , N}, where {ϕi}i∈{1,...,N} is a basis of Xn.
Solving (3.29) amounts to solving the linear system AU = F , where Fi := f(ϕi), i ∈ {1, . . . , N},
and U ∈ CN is the vector corresponding to u. Then, we can split the system in the following way:(

ATnTn ATnFn
AFnTn AFnFn

)(
UTn
UFn

)
=

(
FTn
FFn

)
. (3.30)

Here, UTn corresponds to uT , UFn to uF , ATnTn to the terms contained in a(uT , uT ), ATnFn to
the terms contained in a(uT , uF ), AFnTn to the terms contained in a(uF , uT ), and AFnFn to
the terms contained in a(uF , uF ). Since ATnTn is block diagonal, it can be inverted efficiently.
Using the Schur complement, we can eliminate the interior degrees of freedom and reduce the
computational costs in the following way. First, we observe that

UTn = A−1
TnTn

(
FTn −ATnFnUFn

)
. (3.31)

Inserting this equality into the second equation of (3.30) yields(
AFnFn −AFnTnA−1

TnTnATnFn
)︸ ︷︷ ︸

=:S

UFn = FFn −AFnTnA−1
TnTnFTn . (3.32)

where the matrix S is called the Schur-complement. Thus, we can first solve for UFn using (3.32)
and then reconstruct UTn using (3.31).

Remark 3.26 (Relationship between HDG- and DG schemes). The HDG scheme can be refor-
mulated to recover an equivalent DG scheme by eliminating the facet unknowns [Leh10; Fu+21].
To this end, we introduce a lifting operator Lh that maps volume functions to a unique facet
function. We define the lifting Lh(uT ) as the unique function in Pk(Fn) such that

aHDG
n ((uT ,Lh(uT )), (0, vF )) = 0 for all vF ∈ Pk(Fn). (3.33)

Then, the solution un = (uT , uF ) ∈ Pk(Tn)× Pk(Fn) of the HDG scheme satisfies uF = Lh(uT )
with uT being the solution to

ân(uT , vT ) = f̂(vT ) for all vT ∈ Pk(Tn),

where we define the bilinear form ân(·, ·) and the linear form f̂(·) on Pk(Tn) as

ân(uT , vT ) := aHDG
n ((uT ,Lh(uT )), (vT , 0)) and f̂(vT ) := f((vT , 0)).

We can also define a corresponding DG norm through

‖uT ‖DG := ‖(uT ,Lh(uT ))‖HDG.

If we consider the SIP HDG formulation (3.27) with uniform mesh size h, an explicit formula for
Lh would be given by, cf. [Fu+21, Sec. 3.5],

Lh(uT ) = Πk
F ({{uT }} −

h

2α
J∇uT · νK), (3.34)

where Πk
F is the L2(Fn)-projection.
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3.5.1 Sketch of Analysis

To analyze problem (3.29), we have to interpret the HDG scheme as a discrete approximation
scheme analogously to section 3.4.1. We define the inner product on Xn through

(un, vn)Xn := (un, vn)L2(D) + (Glnun, G
l
nvn)L2(D).

and a projection operator pn ∈ L(X,Xn) through

(pnu, vn)Xn = (u, vn)L2(D) + (∇u,Glnvn)L2(D) for all u ∈ X, vn ∈ Xn.

Proceeding as in section 3.4.1, we can show that indeed limn→∞ ‖pnu‖Xn = ‖u‖X . Further-
more, we can show the following compactness result:

Lemma 3.27. Let (un)n∈N, un ∈ Xn, be such that sup ‖un‖Xn <∞. Then, there exists u ∈ X
and a subsequence N′ ⊂ N such that un

L2

⇀ u and Glnun
L2

⇀ ∇u.

Proof. The statement was shown in [KCR21, Thm. 4.3] with similar techniques to [BO08,
Thm. 5.2].

Then, with the same argumentation as in Lemma 3.18, it follows that AHDG
n

P→ A. Therefore,
(Xn, pn, A

HDG
n ) is a discrete approximation scheme of (X,A).

To analyze the convergence of the method, we have to reconstruct the T -operator once more.
As before, we consider approximations of the Laplace eigenpairs (λ`, e`)`∈N by solving

(Glne`,n, G
l
nvn)L2(D) = λ`,n(e`,n, vn)L2(D) for all vn ∈ Xn.

To our knowledge, the HDG Laplace eigenvalue problem in this form has not yet been analyzed
in the literature. However, due to the correspondence between HDG and DG schemes, cf.
Remark 3.26, we expect that an analysis of this problem can be carried out analogously to the
DG case [ABP06]. Thus, we conjecture at this point that there exists an index n∗ > 0 such that

‖e` − e`,n‖Xn ≤ δ(n), lim
n→∞

δ(n) = 0,

for all ` ∈ N and that λ`max,n < κ2. Then, we set

Wn := span0≤`≤`max
(e`,n)

and Vn := W⊥n . Then, we define the Tn-operator through

Tn := PVn − PWn ,

where PVn , PWn are the orthogonal projections from Xn onto Vn and Wn, respectively. As
before, we have that T−1

n = Tn, i.e. the operator Tn is bijective.
With similar arguments as before, we can show that Tn

P→ T and that the sequence (AHDG
n )n∈N

is Tn-coercive. Consequently, the sequence (AHDG
n )n∈N is regular and we can apply Thm. 2.17

to conclude the convergence of the HDG scheme:

Theorem 3.28. Let κ2 6∈ {λ`}`∈N and let u ∈ X∩H2+s(D), s > 0, be the solution to (3.2). Then,
there exists an index n0 > 0 such that there exists a unique un ∈ Xn such that aHDG

n (un, vn) =
f(vn) for all vn ∈ Xn. Furthermore, it holds that

‖u− un‖Xn .
(
hmin(1+s,k)
n + hmin(s,l)

n

)
‖u‖H2+s(D).
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3.6 Numerical Example

To conclude the discussion on the Helmholtz problem, we consider a numerical example. In
particular, we compare the DG and HDG lifting methods with each other and their respective
SIP counterparts, cf. (3.15) and (3.27). To this end, we consider the unit disk

D = S1 := {x ∈ R2 : |x| ≤ 1}

and choose the right hand side f ∈ L2(D) such that the exact solution of (3.1) is given by

u(x, y) := sin(x2 + y2 − 1) exp
(
iκ(x+ y)

)
. (3.35)

Note that the first term enforces homogeneous Dirichlet boundary conditions on the unit
disk. Furthermore, we choose a small wavenumber κ = 4 to keep the mesh size requirements
very mild. For both SIP methods, we choose the stabilization parameters αHDG = 5k2 and
αDG = 10k2. We note that we choose αDG = 2αHDG deliberately to compare the methods
with each other, because intuitively, the HDG SIP method penalizes the jumps between two
elements twice, though indirectly over the facets. More formally, when we considered the
equivalent DG formulation in Remark 3.26, we observed a factor 1/2 in the definition of the
lifting operator (3.34), which we can resolve by scaling the stabilization parameter accordingly.
For more details, we refer to [Leh10, Sec. 1.2.2.2]. For the implementation of the LS methods,
we choose l = k to ensure that we can achieve optimal order convergence. However, numerical
experiments indicate that l = k − 1 would be sufficient, where we note that for the HDG
method, we would also have to choose the facet space of order k− 1. While choosing l = k− 1
is computationally cheaper, we proceed with l = k to be in line with the theoretical results,
cf. also Remark 3.23. The examples are computed on the scientific computing cluster of the
GWDG2and use 12 threads.

Remark 3.29 (Implementation of the lifting operators). We implement the lifting operators
through a mixed formulation in the following way. Recall, that we have for the bilinear form
aDG
n (·, ·) that

aDG
n (un, vn) :=

∑
τ∈Tn

∫
τ
Gln(un) ·Gln(vn)− κ2unvndx

=
∑
T∈Th

(∫
τ
∇un · ∇vndx+

∫
τ
∇vn ·Rln(un)dx+

∫
τ
∇un ·Rln(vn)dx

+

∫
τ
Rln(un) ·Rln(vn)dx−

∫
τ
κ2unvndx

)
(3.36)

From the definition of the local lifting operator rlF , we have for the second and third term that∑
τ∈Tn

∫
τ
∇vn ·Rln(un)dx = −

∑
F∈Fn

∫
F
JunK · ν{{∇vn}}ds,

∑
τ∈Tn

∫
τ
∇un ·Rln(vn)dx = −

∑
F∈Fn

∫
F
JvnK · ν{{∇un}}ds.

(3.37)

To deal with the fourth term of (3.36), we introduce an auxiliary variable r := Rln(un) ∈ [Pl(Tn)]d

such that∑
τ∈Tn

∫
τ
Rln(un) ·Rln(vn)dx =

∑
τ∈Tn

∫
τ
r ·Rln(vn)dx = −

∑
F∈Fn

∫
F
{{r}} · νJvnKds. (3.38)

2for more information, we refer to https://docs.gwdg.de/doku.php?id=en:services:application_
services:high_performance_computing:start.
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3.6. Numerical Example

By definition of the local lifting operator rlF , the variable r ∈ [Pl(Tn)]d solves the variational
problem ∑

τ∈Tn

∫
τ
r · sdx = −

∑
F∈Fn

∫
F
JunK · ν{{s}}ds for all s ∈ [Pl(Tn)]d. (3.39)

Altogether, we can implement the LS method through the following mixed formulation: Find
(un, r) ∈ Xn × [Pl(Tn)]d such that

ǎn((un, r), (vn, s)) = f(vn) for all (vn, s) ∈ Xn × [Pl(Tn)]d,

where we define the bilinear form ǎ(·, ·) through

ǎn((un, r), (vn, s)) :=
∑
τ∈Tn

(∫
τ
∇un · ∇vn − κ2unvndx

)
(3.40a)

−
∑
F∈Fn

(∫
F
JunK · ν{{∇vn}}ds+

∫
F
{{∇un}} · νJvnKds

)
(3.40b)

−
∑
F∈Fn

∫
F
{{r}} · νJvnKds (3.40c)

−
∑
τ∈Tn

∫
τ
r · sdx−

∑
F∈Fn

∫
F
JunK · ν{{s}}ds. (3.40d)

The terms in (3.40b) stem from (3.37), the term in (3.40c) from (3.38), and the term (3.40d)
accounts for the auxillary problem (3.39). To implement the HDG method, we follow the same
steps with the modified definition of the lifting operator. However, we use the HDG-jump J·K instead
of J·K and leave out the average operator. We further note that we add the terms corresponding to
(3.40c) and (3.40d) twice to ensure that the method is preasymptotically stable.

Fig. 3.6 displays the convergence rates in the L2- and H1-norms. We observe that, as expected
from Thms. 3.22 and 3.28, the H1-error converges with order k for all methods. Furthermore,
the L2-error also converges optimally with order k + 1. Fig. 3.7 compares the computational
costs measured in seconds for matrix assembly and solving the linear system for each method.
While the HDG method is more efficient for both, the SIP and the LS method, the effect is
more profound in the latter case. We observe, in particular, that the cost for solving the linear
system is the same for both methods in the HDG case, while the computational costs of the
LS-DG method are higher than for the SIP-DG method. This is due to the fact that, after static
condensation, the SIP- and LS-HDG methods result in a stiffness matrix with the same sparsity
pattern, while the stiffness matrix associated with the LS-DG method is more dense than the
one associated with the SIP method, cf. Fig. 3.8.
Altogether, these results clearly demonstrate the efficiency of the HDG method in comparison
with the DG method, especially when considering the LS method. We note at this point
that this comparison is somewhat naive, as the efficiency of the HDG method is optimized
through static condensation, whereas for the DG method no such efforts were made since
static condensation is not provided in NGSolve for DG-schemes. It is reasonable to assume that
the DG method could be further optimized, for instance by building the Schur complement
as well. However, this process is more suited for the HDG method due to its local character
which is also reflected in the smaller support of the lifting operator, cf. Fig. 3.5. Thus, even
if we were to optimize the DG method, the advantage of the HDG method would remain.
To conclude the comparison of the different methods, let us note that regardless of whether
we use the DG or HDG method, the SIP method is more efficient than the LS method. The
true advantage of the latter lies in the fact that we can avoid restrictions on the stabilization
parameter α, which becomes more relevant when considering Galbrun’s equation in Part II.
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3.6. Numerical Example

(a) DG SIP (b) HDG SIP

(c) DG LS (d) HDG LS

Figure 3.8: Sparsity pattern of the stiffness matrix A associated with the bilinear forms
aDG(·, ·) and aHDG(·, ·) for the SIP and LS methods with polynomial degree k = 3 and mesh
size h = 0.25. For the matrix corresponding to the DG-LS method, the Schur complement was
calculated.
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Part II

Application for Galbrun’s equation

47



CHAPTER 4

Galbrun’s equation

Galbrun’s equation was first derived in [Gal31] and is a Lagrangian linearization of the time-
dependent nonlinear Euler equations. It is used in aeroacoustics [MGM20] and in its extended
form in asteroseismology [LO67] to model stellar oscillation. For more details on its derivation,
we refer to [HH21, Sec. 2] and [MGM20, Sec. 2]. In a recent paper, Halla and Hohgage
[HH21] proved the well-posedness of Galbrun’s equation and the equations of solar and stellar
oscillations. In this chapter, we will review the analysis of the former problem, which serves as
a basis for the construction of discretizations, and briefly examine the connection of Galbrun’s
equation with the equations of solar and stellar oscillations. For ease of presentation, we will
only present a few selected proofs. For more details, we refer to [HH21].

Contents of the chapter

4.1 Well-posedness of Galbrun’s equation . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Equations of solar and stellar oscillations . . . . . . . . . . . . . . . . . . . . . 51

4.1 Well-posedness of Galbrun’s equation

In this section, we consider the well-posedness of Galbrun’s equation with homogeneous
normal boundary conditions:

−∇(ρc2
s divu) + (divu)∇p−∇(∇p · u)− ρ(ω + i∂b + iΩ×)2u

+ (Hess(p)− ρHess(φ))u+ γρ(−iω)u = f in O, (4.1a)

ν · u = 0 on ∂O, (4.1b)

In the following, we assume that O is a bounded Lipschitz domain and that ω ∈ R, Ω ∈ R3.
Furthermore, we assume that the functions cs, ρ, γ : O → R are measurable and bounded, i.e.
there exists cs, cs, ρ, ρ, γ, γ ∈ R>0 such that

cs ≤ cs ≤ cs, ρ ≤ ρ ≤ ρ, γ ≤ γ ≤ γ

holds almost everywhere in O. Finally, let p, φ ∈ W 2,∞(O,R) and b ∈ L∞(O,R3) such that
div(ρb) ∈ L2(O). The latter assumption is necessary to define ∂b in a weak sense through

〈ρ∂bu,u′〉 := −〈ρu, ∂bu′〉 − 〈div(ρb)u,u′〉, (4.2)

where u′ ∈ (C∞0 (O))3. We note that this assumption is not particularly problematic as we can
expect that mass conservation div(ρb) = 0 holds.
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Chapter 4. Galbrun’s equation

Remark 4.1 (On the dependence of ∂b on ρ). Due to the definition (4.2), the weak derivative
∂b depends on the density ρ. Consequently, the space X, cf. (4.3), defined below also depends
implicitly on ρ. Note, however, that this dependency vanishes for sufficiently smooth ρ ∈W 1,∞(O).
For more details, we refer to [HH21, Section 2.4].

Now, we introduce the following space

X := {u ∈ L2 : divu ∈ L2, ∂bu ∈ L2,ν · u = 0 on ∂O} (4.3)

together with the corresponding inner product

〈u,u′〉X := 〈divu,divu′〉+ 〈∂bu, ∂bu′〉+ 〈u,u′〉. (4.4)

Lemma 4.2 (Lem. 2.1 of [HH21]). With the assumptions on b from above, the space X defined
in (4.3) is a Hilbert space with respect to the inner product 〈·, ·〉X .

Proof. We focus on completeness. To this end, let (un)n∈N be a Cauchy sequence in X. Since
L2(O) and L2(O) are complete, there exit u,v ∈ L2(O) and w ∈ L2(O) such that un → u,
∂bun → v and divun → w as n→∞. For each u′ ∈ C∞0 (O), we have that

〈ρ∂bu,u′〉 = −〈ρu, ∂bu′〉 − 〈div(ρb)u,u′〉 = − lim
n→∞

(〈ρun, ∂bu′〉+ 〈div(ρb)un,u
′〉)

= lim
n→∞

〈ρ∂bun,u′〉X = 〈ρv,u′〉,

and thus ∂bu = v. Similarly, it follows that divu = w and therefore un
X→ u.

To derive a variational formulation of (4.1), we multiply with a testfunction u′ ∈ X and
integrate over the domain O. Furthermore, we apply partial integration to obtain

−〈∇(ρc2
s divu),u′〉 = 〈c2

sρdivu, divu′〉 − 〈c2
sρdivu,u′ · ν〉∂O, (4.5a)

−〈∇(∇p · u),u′〉 = 〈∇p · u,divu′〉 − 〈∇p · u,u′ · ν〉∂O, (4.5b)

where the boundary terms are zero due to the u′ · ν = 0 on ∂O. Thus, the variational
formulation of (4.1) reads as: Find u ∈X such that

a(u,u′) = 〈f ,u′〉 for all u′ ∈X, (4.6)

where the sesquilinear form a(·, ·) is defined as

a(u,u′) :=〈c2
sρdivu, divu′〉 − 〈ρ(ω + i∂b + iΩ×)u, (ω + i∂b + iΩ×)u′〉

+ 〈divu,∇p · u′〉+ 〈∇p · u,divu′〉+ 〈(Hess(p)− ρHess(Φ))u,u′〉
− iω〈γρu,u′〉.

(4.7)

Remark 4.3. Let us emphasize at this point that we deviate from the notation in [HH21] by
calling the sesquilinear form a(·, ·) instead of aCow(·, ·) because the focus of this work is primarily
on Galbrun’s equation. Therefore, we rather denote the sesquilinear form associated with the
equations of solar and stellar oscillation as aext(·, ·), see Section 4.2.

Let A ∈ L(X) denote the operator induced by the sesquilinear form a(·, ·). To show that the
problem (4.6) is well-posed, it suffices to show that the operator A is weakly T-coercive, cf.
Definition 1.14, and injective. Then, we can apply Corollary 1.17 to conclude the bijectivity
of A. The injectivity of A follows directly from the modeling of the damping term, as the
following Lemma shows.
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4.1. Well-posedness of Galbrun’s equation

Lemma 4.4 (Injectivity of A, Lem. 3.7 of [HH21]). Additionally to the assumption from above,
assume that ω 6= 0. Then the operator A induced by a(·, ·) is injective.

Proof. Let u ∈ ker(A). Then, we have

0 = |=(a(u,u))| = |ω|〈γρu,u〉 ≥ |ω|γρ‖u‖2L2 ,

which implies u = 0.

4.1.1 A generalized Helmholtz decomposition

To construct a bijective operator T ∈ L(X) such that A is indeed weakly T-coercive, a
generalized Helmholtz decomposition of the space X is introduced. In the following, we
denote

q := c−2
s ρ−1∇p. (4.8)

Theorem 4.5 (Generalized Helmholtz decomposition). Let ρ, cs, p and b satisfy the assumptions
from above. If b 6= 0, assume furthermore that O is of class C1,1 or convex. Then, the space X
defined in (4.3) admits a topological decomposition

X = V ⊕W ⊕Z, (4.9)

where

1. V ⊂ {∇v0 : v0 ∈ H2(O) with ∂v0
∂ν = 0 on ∂O} is compactly embedded in L2.

2. W = {u ∈X : (div +q·)u = 0}.

3. Z is finite dimensional.

In addition, if the domain O is of class C1,1 or convex, there exists Creg ∈ (0, 1) such that

C2
reg‖∇v‖2(L2)3×3 − (1− C2

reg)‖v‖2L2 ≤ ‖div v‖2L2 (4.10)

for all v ∈ V . If the domain O is of class C1,1. convex, or piecewise C1,1, then for all η ∈W 1.∞

there exists a compact operator Kη ∈ L(X) such that

‖η div v‖2L2 = ‖η∇v‖2(L2)3×3 + 〈Kηv,v〉X . (4.11)

Proof. We refer [HH21, Thm. 3.5].

Remark 4.6 (Connection to the classical Helmholtz decomposition). The classical Helmholtz
decomposition [Joh+17, Lem. 2.6] asserts that on connected domains, every function f ∈ L2 can
be uniquely decomposed into a gradient function and a divergence-free function, i.e. that there
exists φ ∈ H1 \R and f0 ∈H(div) with div f0 = 0 such that f = f0 +∇φ and (f0,∇ψ) = 0 for
all ψ ∈ H1. If q = 0, for example in the case of constant pressure p, then Z = {0} by construction
and therefore the decomposition (4.9) reduces to the classical Helmholtz decomposition. In
contrast, if q 6= 0, then (div +q·) might not be surjective, which is why the space Z is required.
We refer to [HH21] for more details.
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Chapter 4. Galbrun’s equation

4.1.2 T-coercivity

The decomposition of X above allows us to construct the operator T in the following way. For
u ∈X, we introduce the notation

v := PV u, w := PWu, z := PZu,

where PV , PW and PZ are the projections from X into the subspace V , W and Z from
the decomposition (4.9), respectively. Then, u = v +w + z. Now, we define on operator T
through

T := PV − PW + PZ ,

which switches the sign of w. We note that T is selfinverse, that is T 2 = IdX , and therefore
bijective. To formulate a weak T-coercivity result, we introduce the following notations. For a
matrix M ∈ C3×3, we define its numerical range by

numranM := {ξHMξ : ξ ∈ C3, |ξ|2 = 1}, (4.12)

where ξH denotes the conjugate transpose of ξ. Then, we define

M := iωργI3×3 −Hess(p) + ρHess(φ) + c−2
s ρ−1∇p⊗∇p (4.13)

θ := max{0, sup
x∈O
| arg numranM | − π

2
}. (4.14)

The following theorem asserts the weak T-coercivity of the operator A induced by the sesquilin-
ear form a(·, ·) defined in (4.7).

Theorem 4.7. In addition to the previous assumptions, let O be of class C1,1 or convex and
piecewise C1,1. Further, let cs, ρ ∈W 1,∞ and ω 6= 0. If

‖c−1
s b‖2L∞ ≤

1

1 + tan2 θ
,

then the operator A induced by the sesquilinear form a(·, ·) is weakly T-coercive.

Proof. We refer to [HH21, Thm. 3.11].

4.2 Equations of solar and stellar oscillations

In this section, we will connect Galbrun’s equation with the equations of solar and stellar
oscillation as described by Lynden-Bell and Ostriker [LO67]:

−ρ(ω + i∂b + iΩ×)2u−∇(ρc2
s divu) + (divu)∇p−∇(∇p · u) (4.15a)

+ (Hess(p)− ρHess(φ))u+ γρ(−iω)u− ρ∇ψ = f in O, (4.15b)

− 1

4πG
∆ψ + div(ρu) = 0 in R3. (4.15c)

While the Hilbert space X for the Lagrangian pertubations of displacement u was already
introduced in (4.3), an appropriate space for the gravitational potential ψ still has to be
defined. To this end, let G := {g ∈ L2(R3) : curl g = 0} which is a closed subspace of
L2(R3) by the classical Helmholtz decomposition and thus a Hilbert space with respect to the
L2(R3)-inner product. Furthermore, for each g ∈ G there exists a unique gradient potential
ψ ∈ H1

loc(R
3) \ C such that g = ∇ψ. Thus, we define

H̃1
∗ := {ψ : ∇ψ ∈ G}, 〈ψ,ψ′〉H̃1

∗
:= 〈∇ψ,∇ψ′〉L2(R3), (4.16)
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4.2. Equations of solar and stellar oscillations

as an appropriate Hilbert space for the gravitational potential ψ, cf. [HH21, Sec. 2.3].
Then, the weak formulation of the full equations of solar and stellar oscillation (4.15) reads
as: Find (u, ψ) ∈X × H̃1

∗ such that

aext((u, ψ), (u′, ψ′)) = 〈f ,u′〉 for all (u′, ψ′) ∈X × H̃1
∗ ,

where the sesquilinear form a(·, ·) is given by

aext((u, ψ), (u′, ψ′)) := 〈c2
sρdivu,divu′〉+ 〈divu,∇p · u′〉+ 〈∇p · u, divu′〉

+ 〈(Hess(p)− ρHess(φ))u,u′〉
− 〈ρ(ω + i∂b + iΩ×)u, (ω + i∂b + iΩ×)u′〉

− iω〈γρu,u′〉 − 〈∇ψ, ρu′〉 − 〈ρu,∇ψ′〉 − 1

4πG
〈∇ψ,∇ψ′〉L2(R3).

In the following, we denote by Aext ∈ L(X×H̃1
∗ ) the operator induced by the sesquilinear form

aext(·, ·). We first note that ASSO is injective [HH21, Lem. 3.3], which can be shown similarly
to Lemma 4.4. Furthermore, we note that we can recover Galbrun’s equation by setting the
gravitational potential ψ = 0, which is the so-called Cowling approximation [Cow41].
The analysis of Aext is intimately related to the analysis of the operator A associated with the
sesquilinearform (4.7). In fact, if ρ ∈W 1,∞, then Aext is Fredholm if and only if A is Fredholm,
cf., [HH21, Sec. 3.2]. Therefore, in this case, it suffices to analyze Galbrun’s equation to
understand the well-posedness of the full equations of solar and stellar oscillation. In the
case that ρ 6∈W 1,∞, the analysis of Aext can still be connected to A through building a Schur
complement. We refer to [HH21, Sec. 3.2] for more details. The theorem below states that
the operator Aext is indeed weakly T-coercive. To be precise, we define for σ ∈ C

T σ1 :=

(
σT 0
0 IH̃1

∗

)
. (4.17)

Theorem 4.8 (Thm. 3.12 of [HH21]). Assume that the assumptions of Section 4.1 hold true.
Furthermore, let O be of class C1,1 or convex and piecewise C1,1 and let cs, ρ ∈W 1,∞. If ω 6= 0
and

‖c−1
s b‖2L∞ <

1

1 + tan2 θ
, (4.18)

then there exists σ ∈ C such that the operator Aext is weakly T σ1 -coercive.

Proof. We refer to [HH21, Thm. 3.12].
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CHAPTER 5

Existing discretizations for Galbrun’s equation

The purpose of this chapter is to review recently developed discretizations for Galbrun’s
equation. First of all, we will briefly discuss an H1-conforming discretization introduced in
[HLS22]. Then, we will present a H(div)-conforming discontinuous Galerkin discretization
introduced in [Hal23]. For the latter method, we will discuss the analysis extensively as it
serves as a basis for the discretization we aim to introduce in the next chapter and many
results will carry over. We will use both discretizations for numerical examples in Chapter 7.

Contents of the chapter

5.1 H1-conforming finite element discretization . . . . . . . . . . . . . . . . . . . 53
5.2 H(div)-conforming discontinuous Galerkin discretization . . . . . . . . . . . . 58

5.1 H1-conforming finite element discretization

The framework discussed in Chapter 2 has first been applied to Galbrun’s equation in [HLS22],
where an H1-conforming finite element discretization was considered. In this section, we will
briefly review the method and examine its analysis. LetO ⊂ R3 be a bounded Lipschitz domain.
For simplicity, we assume that O is a convex polyhedron. In addition to the assumptions on cs
and ρ from Chapter 4, we assume that cs, ρ ∈W 1,∞. Furthermore, let (Tn)n∈N be a sequence
of shape-regular simplicial triangulations of O and hn be the maximal element diameter such
that hn → 0 as n→∞. For fixed degree k ∈ N, we define the H1-conforming finite element
space

Xn := {u ∈H1 : u|τ ∈ Pk(τ) ∀τ ∈ Tn,ν · u = 0 on ∂O}. (5.1)

Furthermore, we define

H1
ν0 := {u ∈H1 : ν · u = 0 on ∂O},
H1

0 := {u ∈H1 : u = 0 on ∂O}.

Then, we have that Xn ⊂H1
ν0 ⊂X, where X is the space defined in (4.3). It can be shown

that the discrete space Xn fulfills the approximability property.

Lemma 5.1. For each u ∈X, it holds that

lim
n→∞

inf
u′∈Xn

‖u− u′‖X = 0. (5.2)

Proof. We refer to [HLS22, Lemma 7].
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5.1. H1-conforming finite element discretization

In this section, we consider the discrete problem: Find un ∈Xn such that

a(un,u
′
n) = 〈f ,u′n〉 ∀u′n ∈Xn, (5.3)

where the sesquilinear form a(·, ·) is defined through (4.7).
Let A ∈ L(X) be the associated operator to a(·, ·) and PXn ∈ L(X,Xn) be the orthogonal
projection from X onto Xn. We set An := PXnA|Xn . Lemma 5.1 allows us to apply
Corollary 2.21 to conclude that (Xn, PXn , An) is a discrete approximation scheme of (X, A).
In particular, this means that there holds

lim
n→∞

‖u− PXnu‖X = 0 and An
P→ A.

The setup is visualized in Fig. 5.1.

X Xn
PXn

A PXnA|Xn

Figure 5.1: Set up for the H1-conforming discretization of (4.1).

Now, we want to apply Lemma 2.22 to conclude that (5.3) has unique solutions un for all
n > n0, n0 > 0, such that un

P→ u. To this end, we have to show that the sequence (An)n∈N is
regular. We define the spaces

V := {u ∈H1
0 : 〈∇u,∇u′〉 = 0 for all u′ ∈H1

0 with divu′ = 0}, (5.4a)

W := {u ∈X : divu = 0}. (5.4b)

We note that the operator D ∈ L2(V , L2
0) defined by Dv := div v is bijective [ADM06, Thm.

4.1] and that the projections onto V and W are given by

v := D−1 divu, w := u− v.

Therefore, X = V ⊕W is a topological decomposition.
To analyze the discretization (5.3), we want to transfer this topological decomposition onto
the discrete level. Therefore we require the divergence operator to be surjective on Xn, which
means that the space Xn has to fulfill an inf-sup condition, see also Remark 1.10. To be
precise, let us define the space

Qn := {f ∈ L2
0 : f |τ ∈ Pk−1(τ) for all τ ∈ Tn} (5.5)

and let PQn ∈ L(L2
0, Qn) be the associated orthogonal projection from L2

0 to Qn. We pose the
following assumption on Xn:

Assumption 5.1. There exists a constant βh > 0 such that for all n ∈ N, it holds

inf
fn∈Qn\{0}

sup
un∈Xn\{0}

|〈divun, fn〉|
‖∇un‖(L2)3×3‖fn‖L2

> βh

To ensure that this assumption is fulfilled one has to take special care. Usually, a sufficiently
high polynomial degree k is required. In 2D, for instance, we have to assume that k ≥ 4. If
one applies special meshes that use barycentric refinements, this requirement can be relaxed
to k ≥ 2. For more details, we refer to [HLS22] and the references therein.
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Chapter 5. Existing discretizations for Galbrun’s equation

5.1.1 Homogeneous pressure and gravity

Restricting to the case where both, pressure and gravity, are constant, simplifies the sesquilinear
form a(·, ·) defined by (4.7) to

a(u,u′) = 〈c2
sρdivu,divu′〉 − 〈ρ(ω + i∂b + iΩ×)u, (ω + i∂b + iΩ×)u′〉 − iω〈γρu,u′〉.

In the following, let T := PV −PW , where V ,W are defined by (5.4) such that X = V ⊕W .
Then, we can show that a(·, ·) is weakly right T -coercive.

Lemma 5.2. Let β > 0 be the inf-sup constant of the divergence on the domain O and assume

that ‖c−1
s b‖L∞ < β

cs2ρ

cs2ρ
. Then the operator A induced by a(·, ·) is weakly right T-coercive.

Proof. See [HLS22, Corollary 10].

Now we want to transfer the decompositon (5.4) to the discrete level to construct a discrete
operator Tn. To this end, we define the spaces

Vn := {un ∈Xn ∩H1
0 : 〈∇un,u′n〉 = 0 for all u′n ∈H1

0 ∩Wn}, (5.6a)

Wn := {un ∈Xn : divun = 0}. (5.6b)

Assumption 5.1 guarantees that the problem

Find vn ∈ Vn s.t. div vn = divun (5.7)

has a unique solution vn, which satisfies βh‖∇vn‖(L2)3×3 ≤ ‖ div vn‖L2 . Let D−1
n ∈ L(Qn,Vn)

be the respective solution operator and define PVnun := vn, where vn is the solution of (5.7).
Then, PVn ∈ L(Xn) is uniformly bounded and indeed a projection. Setting PWnun := un−vn
yields a decomposition Xn = Vn ⊕Wn. Thus, we define Tn := PVn − PWn ∈ L(Xn), which is
uniformly bounded with uniformly bounded inverse T−1

n = Tn. The following lemmata state
that Tn

P→ T and that (An)n∈N is regular.

Lemma 5.3. For each u ∈X, we have that limn→∞ ‖TnPXnu− PXnTu‖X = 0.

Proof. See [HLS22, Lemma 12].

Lemma 5.4. If ‖c−1
s b‖L∞ < βh

cs2ρ

cs2ρ
, then (An)n∈N is regular.

Proof. The proof of the Lemma utilizes Theorem 2.28. For more details, we refer to [HLS22,
Lemma 13].

Consequently, we can apply Lemma 2.22 and standard interpolation results to obtain the
following result.

Theorem 5.5. Let p and φ be constant and let u solve (0.1a). Furthermore, let assumption 5.1
be satisfied and

‖c−1
s b‖L∞ < βh

cs
2ρ

cs2ρ
.

Then there exists an index n0 > 0 such that for all n > n0, the solution un to (5.3) exists and un
converges in the X-norm with the estimate

‖u− un‖X . inf
u′n∈Xn

‖u− u′n‖X .

If u ∈H1+s, s > 0, then ‖u− un‖X . hmin(s,k)‖u‖H1+s .
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5.1. H1-conforming finite element discretization

5.1.2 Heterogeneous pressure and gravity

To consider heterogeneous pressure and gravitational potential, we denote by q := c−2
s ρ−1∇p

as in (4.8), which allows us to express a(·, ·) as

a(u,u′) :=〈c2
sρ(div +q·)u, (div +q·)u′〉 − 〈ρ(ω + i∂b + iΩ×)u, (ω + i∂b + iΩ×)u′〉
− iω〈γρu,u′〉+ 〈(Hess(p)−Hess(φ)− c2

sρq ⊗ q)u,u′〉
(5.8)

The following construction deviates from the analysis in Section 4.1 by avoiding the introduc-
tion of a discrete subspace Z. Instead, we consider the divergence operator D ∈ L(V , L2

0),
Dv = div v and its inverse D−1 ∈ L(L2

0,V ). We define D̃ ∈ L(V , L2
0) by

D̃v := Dv + q · v +Mv + Fv, (5.9)

where Mv := −mean(q · v) and Fv :=
∑N

n=1 φn〈div v,divψn〉 is finite dimensional where
N ,φn ∈ L2

0 and ψn ∈ V are specified below. Let us briefly elaborate on this construction. Since
we assume that p 6= const, we have that q 6= 0, but (D + q·) is not necessarily bijective. In the
corollary below, we will show that adding the finite-dimensional operator F indeed makes the
operator D̃ bijective. Furthermore, we add the mean value operator M to ensure that D̃ ∈ L2

0.

Corollary 5.6. The operator D̃ defined by (5.9) is bijective.

Proof. Since the embedding H1 ↪→ L2 is compact, the operator q· is compact and therefore
D + q · +M ∈ L(V , L2

0) is a compact perturbation of a bijective operator. Therefore, it is
Fredholm with index zero by Thm. A.23. Consequently, by definition of a Fredholm operator,
its kernel and cokernel are finite-dimensional and by definition of the index, it follows that

dim ker(D + q ·+M) = dim coker(D + q ·+M) := N. (5.10)

Since F is of finite rank, D̃ is Fredholm with index zero. Therefore, to show that D̃ is indeed
bijective, it suffices to show that it is injective. To this end, we note that 〈div ·,div ·〉 is an
equivalent scalar product to 〈·, ·〉H1 on V . Let ψn, n = 1, . . . , N be an orthonormal basis of
ker(D + q ·+M) with respect to 〈div ·, div ·〉 and φn, n = 1, . . . , N be an orthonormal basis of
ran(D + q ·+M)⊥. Now suppose that v ∈ ker(D̃). Then, either

v ∈ ker(D + q ·+M) ∩ ker(F ) or Fv ∈ ran(D + q ·+M)

Suppose v 6= 0. Then, Fv 6= 0 since ψn is a basis of ker(D+q ·+M). Thus, the first case would
immediately imply v = 0. Since φn is a basis of ran(D+q ·+M)⊥, Fv 6∈ ran(D+q ·+M).

Remark 5.7. We note that the existence of a finite rank operator F such that (D+ q ·+M) + F
is bijective immediately follows from Theorem A.25, which states that an operator is Fredholm
with index zero if and only if there exists a finite rank operator such that the sum of the two
operators is bijective.

While the operator D̃ is bounded and well-defined as an operator from X to L2
0, we only

consider the inverse D̃−1 as an operator from L2
0 to V . Thus, for u ∈ X, we construct a

topological decomposition X = V ⊕W through

v := D̃−1D̃u, w := u− v. (5.11)

This construction is visualized in Fig. 5.2. Then, for u = v + w, we define an operator
T ∈ L(X) by

Tu := v −w. (5.12)
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We note that ‖ div v‖L2 ≥ β‖∇‖(L2)3×3 , since v ∈ V and

(div +q·)w = (div +q·)u− (div +q·)v
= (div +q·)u− (div +q ·+M + F )v + (M + F )v

= (div +q·)u− D̃u+ (M + F )v

= −(M + F )u+ (M + F )v

= −(M + F )w,

(5.13)

which is a compact operator.

X L2
0 V

u D̃u D̃−1D̃u

D̃ D̃−1

Figure 5.2: Construction of v in (5.11).

We want to show that the continuous sesquilinear form a(·, ·) is T -coercive with respect to the
operator defined in (5.12). Therefore, we denote by λ−(m) ∈ L∞ the smallest eigenvalue of a
positive definite matrix and consider m := −ρ−1 Hess(p) + Hess(φ). Furthermore, we set

CM := max
{

0, sup
x∈O

−λ−(m(x))

γ(x)

}
and θ := arctan(CM/|ω|) ∈ [0, π/2), ω 6= 0. (5.14)

Lemma 5.8. Let ‖c−1
s b‖L∞ ≤ β

cs2ρ

cs2ρ
1

1+tan2 θ
. Then A is weakly right T-coercive.

Proof. See [HLS22, Corollary 16].

As before, we want to mimic the topological decomposition on the discrete level. We set

D̃n := PQnD̃|Vn ,

where PQn is the orthogonal projection onto the space Qn defined in (5.5). As Vn 6⊂ V , D̃n is
a nonconforming approximation of D̃. However, by setting pn := D−1

n PQn div ∈ L(V ,Vn), it
follows that (Vn, pn, D̃n) is a discrete approximation scheme of (V , D̃), cf. [HLS22, Lem. 17].
Furthermore, the sequence (D̃n)n∈N is stable.

Lemma 5.9. The sequence (D̃n)n∈N approximates D̃ and is stable.

Proof. See [HLS22, Lemma 17].

Thus, we can define the discrete operator Tn ∈ L(Xn) through Tnun := vn −wn, where

vn := D̃−1
n PQnD̃u, wn = un − vn. (5.15)

This construction is visualized in Fig. 5.3. Due to the previous lemma, vn and wn are well-
defined and Tn is uniformly bounded in the operator norm. Furthermore, since vn ∈ Vn, it
holds that ‖ div vn‖L2 ≥ βh‖∇vn‖(L2)3×3 .
Similar to (5.13), we compute that PQn(div +q·)wn = −PQnFwn and set

Tnun := vn −wn. (5.16)

Note that Tn is self-inverse and hence bijective and bounded due to the previous Lemma. The
following Lemma shows that we can apply Theorem 2.28.
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Xn L2
0 Qn Vn

un D̃un PQnD̃nun D̃−1
n PQnD̃un

D̃ PQn D̃−1
n

Figure 5.3: Construction of vn in (5.15).

Lemma 5.10. For each u ∈X, we have that limn→∞ ‖TnPXnu− PXnTu‖X = 0.

Proof. See [HLS22, Lemma 18].

Lemma 5.11. Assuming that ‖c−1
s b‖L∞ <

cs2ρ

cs2ρ
1

1+tan2 θ
, the sequence (An)n∈N is regular.

Proof. As before, the main strategy to show that (An)n∈N is regular lies in applying Theorem
2.28. For details, we refer to [HLS22, Lemma 19].

Thus, we can apply Lemma 2.22 together with standard interpolation results to obtain the
following result.

Theorem 5.12. Let Assumption 5.1 be satisfied and ‖c−1
s b‖L∞ <

cs2ρ

cs2ρ
1

1+tan2 θ
. Then, there exists

an index n0 > 0 such that for all n > n0 the solution un to (5.3) exists and un converges to u in
the X-norm with the estimate

‖u− un‖X . inf
u′n∈Xn

‖u− u′n‖X .

If u ∈H1+s, s > 0, then ‖u− un‖X . hmin(s,k)‖u‖H1+s .

5.2 H(div)-conforming discontinuous Galerkin discretization

In this section, we consider a H(div)-conforming finite element discretization for Galbrun’s
equation (4.1), which is nonconforming with respect to the convection operator. This method,
which was derived and analyzed in [Hal23], does not require a minimal assumption on the
polynomial degree or the mesh structure as the H1-conforming method introduced in Section
5.1 does. Furthermore, the method improves the smallness assumption on the Mach number
and is robust with respect to changes in density and sound speed.

5.2.1 Formulation of the method

Let H(div) := {u ∈ L2 : divu ∈ L2}. For a polynomial degree k ∈ N, k ≥ 1 we introduce the
following finite element spaces

Xn :=
{
u ∈ H0(div) : u|τ ∈ Pk(τ) for all τ ∈ Tn

}
, (5.17a)

Xwbc
n :=

{
u ∈ H(div) : u|τ ∈ Pk(τ) for all τ ∈ Tn

}
, (5.17b)

where H0(div) := {u ∈ H(div) : ν · u = 0 on ∂O} and

Qn :=
{
u ∈ L2

0 : u|τ ∈ Pk−1 for all τ ∈ Tn
}
, (5.17c)

Qwbc
n :=

{
u ∈ L2 : u|τ ∈ Pk−1 for all τ ∈ Tn

}
. (5.17d)
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The space Qn is equipped with the standard L2-scalar product. In the following, we denote
by πdτ : Hs(τ) → Pk(τ), s > 1/2 and πlτ : L2(τ) → Pk(τ), τ ∈ Tn the respective standard
local interpolation operators, cf. Section A.3.3. Furthermore, we denote by πdn : Hs →Xwbc

n ,
s > 1/2, πdn|τ = πdτ , τ ∈ Tn and πln : L2 → Qwbc

n , πln|τ = πlτ , τ ∈ Tn the respective global
interpolation operators. We note that if ν · v = 0 on ∂O, then πdnv ∈ Xn and πlnv ∈ Qn if
v ∈ L2

0, respectively. In particular, we have that the interpolation operators commute with
respect to the divergence operator, i.e., it holds that div πdn = πln div. Furthermore, we have
for all v ∈Hr(τ), v ∈ Hr(τ), r ∈ [1, k + 1], m ∈ [0, r], τ ∈ Tn that

|v − πdnv|Hm(τ) ≤ Caprh
r−m
τ |v|Hr(τ), (5.18a)

|v − πlnv|Hm(τ) ≤ Caprh
r−m
τ |v|Hr(τ), (5.18b)

and
‖v − πdnv|L2(∂τ) ≤ Cabh

r−1/2
τ |v|Hr(τ). (5.19)

As before, let (Tn)n∈N be a sequence of shape-regular simplicial triangulations of O. We denote
by Fn and F int

n the set of all faces and interior faces of Tn, respectively. For τ ∈ Tn and F ∈ Fn,
we denote by hτ and hF their diameters and set hn := maxτ∈Tn hτ . Furthermore, we define
h : Fn → R by h|F := hF . We assume that limn→∞ hn = 0. We further define the broken
Sobolev H1(Tn) by

H1(Tn) :=
{
u ∈ L2 : u|τ ∈H1(τ) for all τ ∈ Tn

}
.

For F ∈ F int
n and τ1, τ2 ∈ Tn such that τ1 ∩ τ2 = F and u ∈H1(Tn) we set

{{u}} :=
1

2
(u1 − u2), JuKb := (b · ν)u1 + (b · ν)u2,

where ui is the trace of u|τi , i = 1, 2. Furthermore, we abbreviate

〈·, ·〉F int
n

:=
∑
F∈F int

n

〈·, ·〉L2(F ), ‖ · ‖2F int
n

:= 〈·, ·〉F int
n
.

We want to introduce a lifting operator as in Chapter 3 to define a discrete version of the
differential operator ∂b. To this end, let l ∈ N and set

Qn := {ψn ∈ L2 : ψn|τ ∈ P l(τ) for all τ ∈ Th}.

For un ∈Xn and F ∈ F int
h , we define rFn un ∈ Qn as the solution to

〈rFn un,ψn〉 = −〈JunKb, {{ψn}}〉L2(F ) for all ψn ∈ Qn. (5.20)

Then, we define the global lifting operatorRl
n :=

∑
F∈F int

h
rFn and note that due to the discrete

trace inequality (A.14) it holds that

‖Rl
nun‖L2 .

∑
F∈Fn

h
−1/2
F ‖JunKb‖L2(F ). (5.21)

Furthermore, we define a linear operator Dn
b : Xn → Qn through

(Dn
bun)|T := ∂b(un|T ) +Rl

nun for all T ∈ Th. (5.22)

With this operator, we can define a scalar product on Xn via

〈un,u′n〉Xn := 〈divun, divu′n〉+ 〈un,u′n〉+ 〈Dn
bun,D

n
bu
′
n〉
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and denote the induced norm by ‖ · ‖Xn = 〈·, ·〉1/2Xn
.

Now, we introduce the following sesquilinear form. For all un,u′n ∈Xn, let

an(un,u
′
n) :=〈c2

sρdivun, divu′n〉 − 〈ρ(ω + iDn
b + iΩ×)un, (ω + iDn

b + iΩ×)u′n〉
+ 〈divun,∇p · u′n〉+ 〈∇p · un, divu′n〉
+ 〈(Hess(p)− ρHess(φ))un,u

′
n〉 − iω〈γρun,u′n〉

(5.23)

Then, we consider the discrete problem: Find un ∈Xn such that

an(un,u
′
n) = 〈f ,u′n〉Xn for all u′n ∈Xn. (5.24)

Remark 5.13 (Motivation for the introduction of lifting operators). The main motivation to
introduce the lifting operator (5.20) and the discrete differential operator Dn

b is to avoid more
confining restrictions on the Mach number ‖c−1

s b‖2L∞ . A classical symmetric interior penalty
formulation of (5.23) would involve the term

− 〈ραb
h

JunKb, Ju′nKb〉Fn , (5.25)

where the stabilization parameter αb > 0 has to be chosen large enough to guarantee the stability
of the discrete sesquilinear form an(·, ·). However, in the subsequent analysis, this would lead to a
more restrictive assumption on the Mach number. The difficulties of choosing suitable stabilization
parameters are further explored through numerical experiments in Section 7.2.3.

5.2.2 Interpretation as discrete approximation scheme

The interpretation of the DG-scheme (5.24) as a discrete approximation scheme goes along
the lines of Section 3.4.1 since it served as a basis for the interpretation developed there.
Therefore, we only give a short overview here, with a special focus on the differences between
both argumentations. As in Section 3.4.1, we have to define suitable projection operators
pn ∈ L(X,Xn) to apply the theory developed in Chapter 2. For u ∈X, let pnu ∈Xn be the
solution to

〈pnu,u′n〉Xn = 〈divu, divu′n〉L2 + 〈u,u′n〉L2 + 〈∂bu, Dn
bu
′
n〉L2 for all u′n ∈Xn. (5.26)

One main differences to the analysis in Section 3.4.1 is that the jump J·Kb is not necessarily
well-defined for u ∈X. Thus, we introduce the following distance function between un ∈Xn

and u ∈X:

dn(u,un)2 := ‖divu− divun‖2L2 + ‖u− un‖2L2 + ‖∂bu−Dn
bun‖2L2 . (5.27)

We note that the distance function dn(·, ·) satisfies the triangle inequalities

dn(u,un) ≤ dn(ũ,un) + ‖u− ũ‖X , dn(u,un) ≤ dn(u, ũn) + ‖un − ũn‖Xn ,

for u, ũ ∈X and un, ũn ∈Xn. With this distance function, we can show that (Xn, pn, An) is
a discrete approximation scheme of (X, A) in the sense of Definition 2.7. To this end, we have
to show analogous lemmeta to those in Section 3.4.1 in terms of the new distance function
dn(·, ·).

Lemma 5.14 (Lem. 3 of [Hal23]). For each u ∈H1
ν0, it holds that dn(u, pnu) ≤ dn(u, πdnu).

Lemma 5.15 (Lem. 4 of [Hal23]). For each u ∈H1
ν0∩H1+s, s > 0, it holds that dn(u, πdnu) .

hsn‖u‖H1+s .
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Lemma 5.16 (Lem. 5 of [Hal23]). For each u ∈X we have that limn→∞ dn(u, pnu) = 0.

Lemma 5.17 (Lem. 6 of [Hal23]). For each u ∈H1
ν0 we have that limn→∞ dn(u, πdnu) = 0.

Lemma 5.18 (Lem. 7 of [Hal23]). For each u ∈X, we have that limn→∞ ‖pnu‖Xn = ‖u‖X .

The following lemma essentially gives an analogous result to Lemma 3.17, but accounts for
the divergence operator and the nonstandard differential operator ∂b.

Lemma 5.19 (Lem. 8 of [Hal23]). Let (un)n∈N, un ∈ Xn satisfy supn∈N ‖un‖Xn < ∞.

Then there exists u ∈ X and a subsequence N′ ⊂ N such that un
L2

⇀ u, divun
L2

⇀ divu and

Dn
bun

L2

⇀ ∂bu.

Proof. Follows with techniques from [BO08, Thm. 5.2]. For more details, we refer to [Hal23,
Lem. 8].

With the previous lemmata, we can conclude that An
P→ A.

Theorem 5.20 (Thm. 9 of [Hal23]). The operator An associated to the sesquilinear form
aDG
n (·, ·) approximates A, i.e. for each u ∈X, it holds that

lim
n→∞

‖Anpnu− pnAu‖Xn = 0. (5.28)

Altogether, we have that (Xn, pn, An) constitutes a discrete approximation scheme of (X, A).
We can now work towards applying the results from Chapter 2.

5.2.3 Convergence analysis

To apply the theoretical framework developed in Chapter 2, the goal is to construct a suitable
T -operator and show weak T -coercivity of the operator A associated with the continuous
bilinear form a(·, ·). Afterwards, a discrete operator Tn is constructed such that the weak T-
compatibility conditions from Thm. 2.28 are satisfied. In particular, this allows us to conclude
that the sequence (An)n∈N is regular and to derive convergence rates.

5.2.3.1 T-coercivity

First of all, we want to construct a topological decomposition of X and an operator T ∈ L(X)
such that A is weakly T -coercive. To be precise, we will use the right T -coercivity, cf. Remark
1.12, to avoid introducing the adjoint operator and therefore deviate from the analysis in
Section 4.1. For u ∈ H0(div), let v ∈ H2 be the solution to

(div +q·)∇v = (div +q·)u in O, (5.29a)

ν · v = 0 on ∂O. (5.29b)

Let us consider (5.29) as a variational problem in H1. First of all, we note that if a solution
v ∈ H2 exists, then the map u 7→ v is a bounded linear mapping from H0(div) to H2

[Amr+98, Thm. 2.17]. However, while the operator associated with the left-hand side of
(5.29) is weakly coercive1, its injectivity is not guaranteed. Whereas the construction in
Thm. 4.5 circumvented this issue by introducing an additional discrete subspace into the
decomposition of X, we remedy this issue by introducing a suitable perturbation of the
left-hand side. To this end, we consider the problem on H2

∗ := {u ∈ H2 : 〈u, 1〉 = 0} and

1Since q· is a compact operator, we essentially consider a compact perturbation of the Laplacian.
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introduce an operator M that has finite rank. Furthermore, we project q into L2
0, i.e. we

replace q by PL2
0
q, where PL2

0
∈ L(L2, L2

0) is the orthogonal projection. To be precise, we
define H2

∗,Neu := {φ ∈ H2
∗ : ν · ∇φ = 0} and

M :=
L∑
l=1

ψl〈div ·,div∇φl〉, (5.30)

where L ∈ N0 is the dimension of the kernel of (div +PL2
0
q·)∇ ∈ L(H2

∗,Neu, L
2
0), φl ∈ H2

∗,Neu,
l = 1, . . . , L is an orthonormal basis with respect to the H2

∗,Neu-equivalent inner product
〈div ·, div ·〉 of the kernel space, and ψl ∈ L2

0, l = 1, . . . , L is an orthonormal basis of the
L2

0-orthogonal complement of (div +PL2
0
q·)H2

∗,Neu. Then, for given u ∈ H0(div), we want to
find v ∈ H2

∗ such that

(div +PL2
0
q ·+M)∇v = (div +PL2

0
q ·+M)u in O, (5.31a)

ν · v = 0 on ∂O. (5.31b)

This problem is well-posed since the operator M ensures the injectivity of the problem, see
also the argumentation in Corollary 5.6. For u ∈X ⊂ H0(div), let v ∈ H2 be the solution to
(5.31). Then, we define the operator T ∈ L(X,X) by setting

Tu := v −w, (5.32)

where v := PV u := ∇v,w := u−v. Per construction, we have that T ∈ L(X) and TT = IdX ,
thus T is bijective. With slight adaptation to the proof of [HH21, Thm. 3.11], it can be shown
that this construction indeed makes the operator A weakly T -coercive. For more details, we
refer to the proof of Lemma 5.31.

Remark 5.21. We note that if q = 0, for example in the case of constant pressure, the decom-
position (5.31) reduces to the usual Helmholtz decomposition, i.e. we decompose u ∈X into a
gradient potential and a divergence-free function. Furthermore, Remark 5.7 still applies, i.e. the
construction of M is an explicit realization of the theoretical result from Thm. A.25.

5.2.3.2 Discrete weak T-coercivity

Now, we introduce and analyze a discrete counterpart of T . Let us note that while Xn 6⊂X
in general, we have that Xn ⊂ H0(div) and X ⊂ H0(div) which is why we considered
u ∈ H0(div) in Problem 5.31. Therefore, we consider the following problem: For u ∈ H0(div),
we define ṽ ∈ H2

∗ to be the solution to

(div +PL2
0
q ·+M)∇ṽ = (div +πlnq ·+M)u in O, (5.33a)

ν · ṽ = 0 on ∂O. (5.33b)

We note that this problem is well-posed with the same arguments as for Problem (5.31). For
un ∈Xn, let ṽ be the solution to (5.33). Then, we define the discrete operator Tn by setting

Tnun := vn −wn, (5.34)

where vn := PVnun := πdn∇ṽ and wn := un − vn. We also denote ṽ := PṼnu := ∇ṽ.
Next, we will show that this operator is indeed bounded, stable and approximates T .

Lemma 5.22. There exists a constant C > 0 such that ‖Tn‖L(Xn) ≤ C for all n ∈ N.
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Proof. Since Tn = 2PVn − IdX , it suffices to show that PVn is bounded. Thus, for given
un ∈Xn, let ṽ be the solution to (5.33). Then, we have that ‖ṽ‖H2 . ‖un‖Xn . As ∇ṽ ∈H1,
the function πdn∇ṽ is well-defined and with (5.21), (5.18), and (5.19) we estimate

‖Rl
n(πdn∇ṽ)‖L2 .

∑
F∈Fn

h
−1/2
F ‖Jπdn∇ṽ −∇ṽKb‖L2(F ) . |πdn∇ṽ −∇ṽ|H1 . |∇ṽ|H1 ,

where we exploit that J∇ṽbK = 0. Thus, with div πdn∇ṽ = πln div∇ṽ and the boundedness
of πdn, π

l
n, we have that ‖πdn∇ṽ‖Xn . ‖πdn∇ṽ‖X + ‖Rl

n(πdn∇ṽ)‖L2 . ‖ṽ‖H2 and therefore we
obtain that ‖PVn‖L(Xn) ≤ C for a constant C > 0.

The next lemma states that the projection PVn is asymptotically idempotent.

Lemma 5.23. Let On := PVnPVn − PVn . Then, it holds that limn→∞ ‖On‖L(Xn) = 0.

Proof. Let un ∈ Xn and ṽ1 be the solution to (5.33). Then, we have that PVnun = πdn∇ṽ1.
Let ṽ2 be the solution of (5.33) with un replaced by PVnun in the right hand side. Then, we
compute

(div +PL2
0
q ·+M)∇ṽ2 = (div +πlnq ·+M)PVnun

= πln(div +PL2
0
q ·+M)∇ṽ1 +Mπdn∇ṽ1 − πlnM∇ṽ1

+ πlnq · (πdn − IdX)∇ṽ1

= πln(div +πlnq ·+M)un +M(πdn − IdX)∇ṽ1 + (IdL2
0
−πln)M∇ṽ1

+ πlnq · (πdn − IdX)∇ṽ1

= (div +πlnq ·+M)un + Õnun,

where Õnun := M(πdn−IdX)∇ṽ1 +(IdL2
0
−πln)M∇ṽ1 +(πln−IdL2

0
)Mun+πlnq ·(πdn−IdX)∇ṽ1.

Since M is compact and maps into L2
0 and IdL2

0
−πln converges pointwise to zero, we have

that (IdL2
0
−πln)M and (πln − IdL2

0
)M converge to zero in the operator norm due to the

Banach-Steinhaus theorem [BS18, Thm. 2.1.5]. Furthermore, we estimate

‖M(πdn − IdX)PṼn‖L(Xn,L2
0) . ‖div(πdn − IdX)PṼn‖L(Xn,L2

0) = ‖(πln − IdL2
0
) divPṼn‖L(Xn,L2

0),

where the first estimate follows from the definition of M and the second since div πdn = πln div.
We further compute for ṽ solving (5.33) that

div∇ṽ = (div +πlnq ·+M)un − (PL2
0
q ·+M)∇ṽ,

πln div∇ṽ = (div +πlnq ·+M)un − πln(q ·+M)∇ṽ + (πln − Id)Mun.

Thus, we have that

‖M(πdn−IdX)PṼn‖L(Xn,L2
0) . ‖(PL2

0
−πln)(q·+M)PṼn‖L(H0(div),L2

0)+‖(πln−Id)M‖L(H0(div),L2
0).

Since IdL2
0
−πln tends pointwise to zero and M is compact, the second term on the right-hand

side tends to zero as well. Furthermore, we have that

‖(PL2
0
− πln)(q · PṼn)‖L(H0(div),L2

0) . hn‖q · PṼn‖L(H0(div),H1) . hn,

and therefore it follows that ‖M(πdn−IdX)PṼn‖L(Xn,L2
0) converges to zero. Finally, we estimate

‖πlnq · (πdn − IdX)PṼn‖L(Xn,L2
0) . hn‖PṼn‖L(H0(div),H1) . hn.
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Therefore, it follows that limn→∞ ‖Õn‖L(Xn,L2
0) = 0. Since (div +PL2

0
q · +M)∇(ṽ2 − ṽ1) =

Õnun, the claim now follows from

‖(PVnPVn − PVn)un‖Xn . ‖∇(ṽ2 − ṽ1)‖H1 . ‖Õn‖L(Xn,L2
0)‖un‖Xn . (5.35)

Lemma 5.24. There exists a constants n0, C > 0 such that Tn is invertible and ‖T−1
n ‖L(Xn) ≤ C

for n > n0.

Proof. From the previous lemma and the definition of Tn, we have that TnTn = 4PVnPVn −
4PVn + IdXn = IdXn +4On. Since ‖On‖L(Xn) → 0 for n → ∞, there exists an index n0 > 0
such that ‖On‖L(Xn) < 1/8 for all n > n0 and hence ‖(IdX +4On)−1‖L(Xn) ≤ 2 for n > n0.
Then, as T−1

n = (TnTn)−1Tn = (IdX +4On)−1Tn, we have that ‖T−1
n ‖L(Xn) ≤ 2‖Tn‖L(Xn) for

n > n0. The claim now follows from Lemma 5.22.

Lemma 5.25. It holds that limn→∞ ‖(Tnpn − pnT )u‖Xn = 0 for all u ∈X.

Proof. By definition of Tn and T , it suffices to show that limn→∞ ‖(PVnpn − pnPV )u‖Xn = 0
for all u ∈X. Due to the boundedness of PVn = πdnPṼn , we have that

‖(PVnpn−pnPV )u‖Xn

≤ dn(PV u, pnPV u) + dn(PV u, PVnpnu)

= dn(PV u, pnPV u) + dn(PV u, π
d
nPṼnpnu)

≤ dn(PV u, pnPV u) + dn(PV u, π
d
nPṼnu) + ‖πdnPṼn(u− pnu)‖Xn

. dn(PV u, pnPV u) + dn(PV u, π
d
nPV u) + ‖PV u− PṼnu‖X + ‖u− pnu‖H(div)

. dn(PV u, pnPV u) + dn(PV u, π
d
nPV u) + ‖(PL2

0
− πln)(q · u)‖L2 + dn(u, pnu),

where the last estimates follows as ‖PV u−PṼnu‖X . ‖(PL2
0
−πln)(q ·u)‖L2 due to (5.31) and

(5.33). The claim now follows from Lemma 5.16, Lemma 5.17 and the pointwise convergence
of πln to PL2

0
.

Therefore, we are left with showing that the remaining conditions from Thm. 2.28 are
satisfied. In preparation, we show that the discrete differential operator Dn

b can be bounded
by a suitably weighted H1-seminorm. Before we proceed, let us note some preliminaries. First
of all, we define the weighted H1-seminorm | · |H1

c2sρ
on H1

ν0 by setting

|u|2H1
c2sρ

:= ‖csρ1/2∇u‖2(L2)3×3 .

Furthermore, we note that due to [HH21, Thm. 3.5], see also Thm. 4.5, there exists a compact
operator KG ∈ L(V ) such that

〈c2
sρ div v,div v〉 = |v|2H1

c2sρ

+ 〈KGv,v〉V , (5.36)

where V := {∇v : v ∈ H2
∗,Neu}, ‖ · ‖V = | · |H1

c2sρ
. We also note that the calculation in the proof

of Lemma 5.23 yields that for un ∈Xn, it holds that

(div +πlnq·)wn = −Mwn − Õnun, (5.37)

where Õn is defined as in Lemma 5.23. Furthermore, recall that the operatorM ∈ L(H0(div), L2
0)

is compact and that ‖Õn‖L(Xn,L2
0) converges to zero.
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Lemma 5.26 (Lem. 16 of [Hal23]). For all v ∈H1
ν0 and n ∈ N, it holds that

‖ρ1/2Dn
bπ

d
nv‖2L2 ≤ (C#

π )2(1 + h2
nC̃π)‖c−1

s b‖2L∞ |v|2H1
c2sρ

, (5.38)

with constants C̃π > 0 and

(C#
π )2 := 2

(
(CabCshCdt)

2 + sup
n∈N

sup
τ∈Tn

‖πdn‖2L(H1
∗(τ))

)
, ‖ · ‖H1

∗(τ) := | · |H1(τ). (5.39)

Proof. For each τ ∈ Tn, it holds that

‖ρ1/2∂bπ
d
nv‖2L2(τ) ≤ ‖c

−1
s b‖2L∞(τ)csτ

2ρτ |πdnv|2H1(τ) (5.40a)

≤ ‖c−1
s b‖2L∞(τ)csτ

2ρτ‖πdn‖2L(H1
∗(τ))|v|

2
H1(τ) (5.40b)

≤ ‖c−1
s b‖2L∞(τ)csτ

2ρτ‖πdn‖2L(H1
∗(τ))

1

c2
sτρτ
|v|2H1

c2sρ
(τ) (5.40c)

≤ ‖c−1
s b‖2L∞(τ)‖π

d
n‖2L(H1

∗(τ))

(
1 + h2

n

1

csτ
2ρτ

(CL
csρ1/2

)2
)2
|v|2H1

c2sρ
(τ) (5.40d)

For the last line, we utilize |x− y| ≤ hτ ≤ hn for all x, y ∈ τ to obtain

1

c2
sτρτ

≤ 1

csτ
2ρτ
≤ 1 +

|csτ 2ρτ − csτ 2ρτ |
csτ

2ρτ
≤ 1 + h2

n

1

csτ
2ρτ

(CL
csρ1/2

)2, (5.41)

where CL
csρ1/2

is the Lipschitz constant2of csρ1/2. Furthermore, we compute

‖ρ1/2Rl
nπ

d
nv‖L2(τ) = ‖ρ1/2

∑
F∈Fτ

rFn π
d
nv‖L2(τ) ≤ Cdtρτ‖h−1/2JπdnvKb‖L2(∂τ)

= Cdtρτ‖h−1/2Jπdnv − vKb‖L2(∂τ).

Using (5.19) we further estimate with the same arguments as in (5.41) that

C2
dt

∑
τ∈Tn

ρτ‖h−1/2Jπdnv − vKb‖2L2(∂τ) ≤ C
2
dt

∑
τ∈Tn

ρτ
∑
F∈Fτ

‖h−1/2Jπdnv − vKb‖2L2(F )

≤ C2
dt

∑
τ∈Tn

ρτ
∑
F∈Fτ

(1

2

2∑
j=1

‖h−1/2(ν · b)((πdnv)j − v)‖L2(F )

)2

≤
C2

dt
2

∑
τ∈Tn

ρτ
∑
F∈Fτ

2∑
j=1

‖h−1/2(ν · b)((πdnv)j − v)‖2L2(F )

≤ ‖c−1
s b‖2L∞Cdt2

∑
τ∈Tn

csτ
2ρτ‖h−1/2((πdnv)|τ − v)‖2L2(∂τ)

≤ ‖c−1
s b‖2L∞C2

abC
2
shC

2
dt

∑
τ∈Tn

csτ
2ρτ |v|2H1(τ)

≤ ‖c−1
s b‖2L∞C2

abC
2
shC

2
dt

(
1 + (Chn)2 1

cs2ρ
(CL

csρ1/2
)2
)2
|v|2H1

c2sρ

,

where the constant C > 0 only depends on Csh. Combining the estimates for ‖ρ1/2∂bπ
d
nv‖L2

and ‖ρ1/2Rl
nπ

d
nv‖L2 yields the claim.

2By assumption, we have that csρ1/2 ∈W 1,∞. Since O is assumed to be bounded and convex, every function
in W 1,∞ is Lipschitz continuous [EG21a, Rem. 2.12].
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Now, we define operators KEPV
n ,Kmean

n ,KKG
n ,KM

n ∈ L(Xn) by setting for un,u′n ∈Xn

〈KEPV
n un,u

′
n〉Xn := 〈PVnun, PVnu′n〉L2 ,

〈Kmean
n un,u

′
n〉Xn := 〈mean(q ·wn),mean(q ·w′n)〉L2 ,

〈KKG
n un,u

′
n〉Xn := 〈KGPṼnun,KGPṼnu

′
n〉V ,

〈KM
n un,u

′
n〉Xn := 〈Mun,Mu′n〉L2 .

The following Lemma shows that these operators define P-compact sequences in the sense of
Definition 2.15.

Lemma 5.27. The sequences of operators (KEPV
n )n∈N, (K

mean
n )n∈N, (K

KG
n )n∈N, (K

M
n )n∈N are

compact in the sense of discrete approximation schemes.

Proof. Following the argumentation of [Hal23, Lem. 17], we show the statement for
(KEPV

n )n∈N and note that the argumentation for the other sequences goes along the same
lines. Let (un)n∈N, un ∈ Xn, be a bounded sequence with ‖un‖Xn ≤ 1 for each n ∈ N
and N′ ⊂ N be an arbitrary subsequence. To show that (KEPV

n )n∈N is compact, we have to
show that (KEPV

n un)n∈N is P-compact, i.e. that there exists a subsequence N′′ ⊂ N′ such
that (KEPV

n un)n∈N′′ converges in Xn, cf. Definition 2.15. We recall that the embedding
H1
ν0 ↪→ L2 is compact and that the operators PVn = πdnPṼn , PṼn ∈ L(H0(div),H1

ν0), are
uniformly bounded. Therefore, there exists z ∈ L2 and a subsequence N′′ ⊂ N′ such that
limn→∞ ‖z − PṼnun‖L2 = 0. Furthermore, we compute

‖z − PVnun‖L2 = ‖z − πdnPṼnun‖L2 ≤ ‖z − PṼnun‖L2 + ‖(1− πdn)PṼnun‖L2

. ‖z − PṼnun‖L2 + hn‖PṼnun‖H1
n∈N′′−→ 0.

In the following, we want to show that there exists a subsequence N′′′ ⊂ N′′ such that
limn∈N′′′ ‖pnP ∗V z −KEPV

n un‖Xn = 0, where P ∗V is the adjoint operator of PV . Let u′n ∈ Xn,
‖un‖Xn = 1, n ∈ N′′ be such that

‖pnP ∗V z −KEPV
n un‖Xn ≤ |〈pnP ∗V z −KEPV

n un,u
′
n〉Xn |+ 1/n.

Due to Thm. 5.19, we can choose N′′′ ⊂ N′′ and un ∈X such that u′n
L2

⇀ u. On the one hand,
we obtain

〈pnP ∗V z,u′n〉Xn = 〈divP ∗V z, divu′n〉+ 〈P ∗V z,u′n〉+ 〈∂bP ∗V z, Dn
bu
′
n〉

n∈N′′′−→ 〈divP ∗V z, divu〉+ 〈P ∗V z,u〉+ 〈∂bP ∗V z, ∂bu〉 = 〈P ∗V z,u〉X = 〈z, PV u〉.

On the other hand, it holds that

〈KEPV
n un,u

′
n〉Xn = 〈PVnun, PVnu′n〉L2

= 〈PVnun − z, PVnu′n〉L2 + 〈z, πdnPṼnu
′
n〉L2

= 〈PVnun − z, PVnu′n〉L2 + 〈z, πdnPV u′n〉L2 + 〈z, πdn(PṼn − PV )u′n〉L2

= 〈PVnun − z, PVnu′n〉L2 + 〈z, PV u′n〉L2 + 〈z, (πdn − 1)PV u
′
n〉L2

+ 〈z, πdn(PṼn − PV )u′n〉L2

= 〈PVnun − z, PVnu′n〉L2 + 〈z, PV u′n〉L2 + 〈z, (πdn − 1)PV u
′
n〉L2

+ 〈z, (πdn − 1)(PṼn − PV )u′n〉L2 + 〈z, (PṼn − PV )u′n〉L2 .
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We estimate

‖(1− πdn)PV u
′
n‖L2 + ‖(1− πdn)(PṼn − PV )u′n‖L2 . hn(‖PV u′n‖H1 + ‖PṼnu

′
n‖H1) . hn.

Furthermore, we can write (PṼ − PV )u′n = S(πln − PL2
0
)(q · u′n) with S := ∇((div +PL2

0
q ·

+M)∇)−1 ∈ L(L2
0,L

2) and therefore we obtain since πln converges pointwise to PL2
0

that

〈z, (PṼn − PV )u′n〉L2 = 〈z, S(πln − PL2
0
)(q · u′n)〉L2 = 〈(πln − PL2

0
)S∗z, PL2

0
(q · u′n)〉L2

0

n∈N′′′−→ 0.

Finally, since

〈z, PV u′n〉L2 = 〈P ∗V z,u′n〉H0(div)
n∈N′′′−→ 〈P ∗V z,u′〉H0(div) = 〈z, PV u′〉L2 ,

it follows that KEPV
n un

P→ P ∗V z, n ∈ N′′′. Thus, (KEPV
n )n∈N is indeed P-compact. With the

same technique, we can show that (Kmean
n )n∈N, (KKG

n )n∈N and (KM
n )n∈N are P-compact as

well.

Let λ−(m) ∈ L∞ be the smallest eigenvalue of a symmetric matrix m. From now on, we set
m = −ρ−1 Hess(p) + Hess(φ). Additionally, we define the constants

Cm := max
{

0, sup
x∈O

−λ−(m(x))

γ(x)

}
and θ := arctan(Cm/|ω|) ∈ [0, 2π), ω 6= 0. (5.42)

With this notation, we pose the following smallness assumption on the Mach number.

Assumption 5.2. The background flow b is subsonic in the sense that

‖c−1
s b‖2L∞ <

1

(C#
π )2

1

1 + C2
m/|ω|2

, (5.43)

where C#
π is the constant from Lemma 5.26.

Comparing this smallness assumption with the assumption on the Mach number from Theorem

5.12 from Section 5.1, we notice that we avoid the ratio
cs2ρ

cs2ρ
which improves the robustness

of the method against drastic changes in sound-speed and density.
Now, our main goal is to show that the sequence (An)n∈N is regular by applying Thm. 2.28.
Since we have already shown that the sequence (Tn)n∈N is stable and approximates T , we
have to show that we can write AnTn = Bn +Kn, where (Bn)n∈N is stable and approximates
a bijective operator B and (Kn)n∈N is compact. To show that this is indeed the case, we
follow the proof of [Hal23, Thm. 18]. For ease of presentation, we split the proof into several
lemmata. Let KG ∈ L(V ) be the compact operator from (5.36). With constants C1, C2 > 0
that will be specified later on, we define for un,u′n ∈Xn

〈B̃nun,u′n〉Xn :=

〈c2
sρ div vn,div v′n〉 − 〈ρiDn

bvn, iD
n
bv
′
n〉+ 〈c2

sρπ
l
n(q ·wn), πln(q ·w′n)〉 (5.44a)

− 〈ρiDn
bvn, (ω + iDn

b + iΩ×)w′n〉+ 〈ρ(ω + iDn
b + iΩ×)wn, iD

n
bv
′
n〉 (5.44b)

+ 〈ρ(ω + iDn
b + iΩ×)wn, (ω + iDn

b + iΩ×)w′n〉+ 〈ρ(iωγ +m)wn,w
′
n〉 (5.44c)

+ 〈vn,v′n〉+ C1〈KGPṼnun,KGPṼnu
′
n〉V + 〈Mwn,Mw

′
n〉+ 〈Õnun, Õnu′n〉 (5.44d)
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and

〈K̃nun,u
′
n〉Xn :=

C2

(
〈vn,v′n〉+ 〈KGPṼnun,KGPṼnu

′
n〉V + 〈Õnun, Õnu′n〉 (5.45a)

+ 〈Mwn,Mw
′
n〉+ 〈mean(q ·wn),mean(q ·w′n)〉

)
(5.45b)

+ 〈c2
sρq · vn,div v′n〉+ 〈c2

sρdiv vn, q · v′n〉 − 〈ρ(ω + iΩ×)vn, (ω + iΩ×)v′n〉 (5.45c)

− 〈ρ(ω + iΩ×)vn, iD
n
bv
′
n〉 − 〈ρiDn

bvn, (ω + iΩ×)v′n〉 − iω〈γρvn,v′n〉 (5.45d)

− 〈ρmvn,v′n〉 (5.45e)

− 〈ρmvn,w′n〉 − iω〈γρvn,w′n〉 − 〈c2
sρπ

l
n(q · vn), πln(q ·w′n)〉 (5.45f)

− 〈ρ(ω + iΩ×)vn, (ω + iDn
b + iΩ×)w′n〉 (5.45g)

− 〈c2
sρ(div +πlnq·)vn,Mw′n + Õnu

′
n〉+ 〈c2

sρ(Id−πln)(q · vn), divw′n〉 (5.45h)

+ 〈ρmwn,v
′
n〉+ iω〈γρwn,v

′
n〉+ 〈c2

sρπ
l
n(q ·wn), πln(q · v′n)〉 (5.45i)

+ 〈ρ(ω + iDn
b + iΩ×)wn, (ω + iΩ×)v′n〉 (5.45j)

+ 〈c2
sρ(Mwn + Õnun), (div +πlnq·)v′n〉 − 〈c2

sρdivwn, (Id−πln)(q · v′n)〉 (5.45k)

− 〈c2
sρ(Id−mean− πln)(q ·wn),divw′n〉 − 〈c2

sρmean(q ·wn),divw′n〉 (5.45l)

− 〈c2
sρdivwn, (Id−mean− πln)(q ·w′n)〉 − 〈c2

sρdivwn,mean(q ·w′n)〉 (5.45m)

− 〈c2
sρ(Mwn + Õnun),Mw′n + Õnu

′
n〉. (5.45n)

Then, we define Bn := B̃n + K̃n. Furthermore, we define

〈Knun,u
′
n〉Xn :=

− (1 + C2)〈vn,v′n〉 − (C1 + C2)〈KGPṼnun,KGPṼnu
′
n〉V (5.46a)

− (1 + C2)〈Mwn,Mw
′
n〉 − C2〈mean(q ·wn),mean(q ·w′n)〉 (5.46b)

− (1 + C2)〈Õnun, Õnu′n〉 (5.46c)

We note that the uniform boundedness of Bn, n ∈ N, follows from straightforward computa-
tions.

Lemma 5.28. There exist sequences of operators (Bn)n∈N, Bn ∈ L(Xn), and (Kn)n∈N, Kn ∈
L(Xn), such that AnTn = Bn +Kn for all n ∈ N and the sequence (Kn)n∈N is compact.

Proof. The sequence (Kn)n∈N is indeed compact in the sense of discrete approximation
schemes due to Lemma 5.27 and limn→∞ ‖Õn‖L(Xn,L2) = 0. Furthermore, the sequence
(K̃n)n∈N is also compact for a sufficiently large constant C2. In the following, we argue that
there holds AnTn = Bn + Kn. First of all, we note that 〈AnTnun,u′n〉Xn = an(Tnun,u

′
n) =

an(vn −wn,v
′
n +w′n). We rewrite the sesquilinear form an(·, ·) using the previously defined
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matrix m and q as in (4.8):

an(vn −wn,v
′
n +w′n) =〈c2

s div(vn −wn),div(v′n +w′n)〉
− 〈ρ(ω + iDn

b + iΩ×)(vn −wn), (ω + iDn
b + iΩ×)(v′n +w′n)〉

+ 〈c2
sρ div(vn −wn), q · (v′n +w′n)〉

+ 〈c2
sρq · (vn −wn),div(v′n +w′n)〉

− 〈ρm(vn −wn),v′n +w′n〉
− iω〈γρvn −wn,v

′
n +w′n〉.

Splitting this expression into the terms associated with (vn,vn), (vn,wn), (wn,vn) and
(wn,wn) gives rise to some of the terms appearing in the definition of Bn and Kn, for
example all terms in the lines (5.45c)-(5.45e). For the sake of readability, we will only explain
the terms that were added or modified. For stability, we add the terms (5.44d), (5.45a)
and (5.45b), which cancel with (5.46a), (5.46b) and (5.46c). Additionally, we add the term
〈c2
sρπ

l
n(q · wn), πln(q · wn)〉 in (5.44a). It is subtracted again in (5.45) with the following

argument. Since we want to get rid of the term −〈c2
sρdivwn, divwn〉 coming from an(·, ·), we

add

− 〈c2
sρ divwn, π

l
n(q ·w′n)〉 − 〈c2

sρπ
l
n(q ·wn),divw′n〉 − 〈c2

sρπ
l
n(q ·wn), πln(q ·w′n)〉 (5.47)

such that (5.37) yields

−〈c2
sρ(div +πlnq·)wn, (div +πlnq·)w′n〉 = −〈c2

sρ(Mwn + Õnun),Mw′n + Õnu
′
n〉 = (5.45n).

The remaining added terms in (5.47) are balanced in (5.45l) and (5.45m). In these lines, we
can also find the naturally appearing terms −〈c2

sρq · wn, divw′n〉 and −〈c2
sρ divwn, q · w′n〉,

as well as the terms ±〈c2
sρmean(q ·wn),divw′n〉 and ±〈c2

sρdivwn,mean(q ·w′n)〉 which are
used lateron. In the same manner, we reformulate the terms 〈c2

sρ div vn, (div +q·)w′n〉 and
−〈c2

sρ(div +q·)wn,div v′n〉 stemming from an(·, ·) in (5.45f)-(5.45h) and (5.45i)-(5.45k).

Lemma 5.29. Let Assumption 5.2 be satisfied. Then, there exists an index n0 > 0 such that the
operator B̃n defined in (5.44) is coercive for all n > n0.

Proof. We recall that the divergence operator and the interpolation operator πdn commute in
the sense that div πdn = πln div. Thus, we have with the definition of ṽ, cf. (5.33), that

div vn = div πdn∇ṽ = πln div∇ṽ = πln

(
− (PL2

0
q ·+M)∇ṽ + (div +πlnq ·+M)un

)
= −(PL2

0
q ·+M)∇ṽ + (div +πlnq ·+M)un

+ (Id− πln)(PL2
0
q ·+M)∇ṽ + (πln − Id)Mun

= div∇ṽ + (Id− πln)(PL2
0
q ·+M)PṼnun + (πln − Id)Mun

=: ∆ṽ + Ônun,

where the second to last line follows from the definitions of ṽ and PṼn . Note that similarly to
the proof of Lemma 5.23, one can show that limn→∞ ‖Ôn‖L(Xn,L2

0) = 0. Defining

〈Ǒnun,u′n〉 := 〈c2
sρdiv vn, Ônu

′
n〉+ 〈c2

sρÔnun,div v′n〉+ 〈c2
sρÔnun, Ônu

′
n〉,

we can write
〈c2
sρdiv vn, div vn〉 = 〈c2

sρ∆ṽ,∆ṽ〉+ 〈Ǒnun,u′n〉Xn . (5.48)
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Note that there holds limn→∞ ‖Ǒn‖L(Xn) = 0 and using (5.36) we have that

〈c2
sρdiv vn,div vn〉 = |∇ṽ|2H1

c2sρ

+ 〈KGPṼnun, PṼnun〉V + 〈Ǒnun,u′n〉Xn . (5.49)

Using the smallness assumption 5.2 on the Mach number, we can find ε ∈ (0, 1), τ ∈ (0, π/2−θ)
and n0 > 0 such that

Cθ,τ,ε,n0 := 1− (C#
π )2(1 + sup

n>n0

h2
nC̃π)‖c−1

s b‖2L∞(1 + tan2(θ + τ)(1 + ε)−1 − ε)− ε > 0.

Now, we can estimate with the weighted Young’s inequality3and the definition of θ

1

cos(θ + τ)
<
(
e−i(θ+τ)sgnω〈B̃nun,un〉Xn

)
= ‖csρ1/2 div vn‖2L2 − ‖ρ1/2Dn

bvn‖2L2 + ‖vn‖2L2 + C1‖KGPṼnun‖
2
V + ‖Mwn‖2L2

+ ‖Õnun‖2L2 + ‖csρ1/2πln(q ·wn)‖2L2 + ‖ρ1/2(ω + iDn
b + iΩ×)wn‖2L2 + 〈ρmwn,wn〉L2

+ 2 tan(θ + τ)sgnω=
(
〈ρ(ω + iDn

b + iΩ×)w, iDn
bvn〉

)
− |ω| tan(θ + τ)‖(γρ)1/2wn‖2L2

≥ ‖csρ1/2 div vn‖2L2 − (1 + tan2(θ + τ)(1− ε)−1)‖ρ1/2Dn
bvn‖2L2 + ‖vn‖2L2

+ C1‖KGPṼnun‖V + ‖Mwn‖2L2 + ‖Õnun‖2L2 + ‖csρ1/2πln(q ·wn)‖2L2

+ ε‖ρ1/2(ω + iDn
b + Ω×)wn‖2L2 + |ω|(tan(θ + τ)− tan(θ))‖(γρ)1/2wn‖2L2 .

Here, we use the identities e−ix = cos(x)− i sin(x) and tan(x) = sin(x)/ cos(x). Furthermore,
we use the definition of θ to estimate

〈ρmwn,wn〉 ≥ 〈ρλ−(m)wn,wn〉 ≥ −|ω| tan(θ)‖(γρ)1/2wn‖L2 .

Then, we apply Lemma 5.26, (5.49) and Young’s inequality to obtain

‖csρ1/2 div vn‖2L2 − (1 + tan2(θ + τ)(1− ε)−1)‖ρ1/2Dn
bvn‖2L2 + ‖vn‖2L2 + C1‖KGPṼnun‖

2
V

≥ ε
(
‖csρ1/2 div vn‖2L2 + ‖ρ1/2Dn

bvn‖2L2

)
+ Cθ,τ,ε,n0 |∇ṽ|2c2sρ + ‖vn‖2L2

+
(
C1 −

1

δ

)
‖KGPṼnun‖

2
V − (δ sup

m∈N
‖PṼm‖L(Xm,V ) + ‖Ǒn‖L(Xn))‖un‖2Xn

≥ εmin{cs2ρ, ρ, 1}‖vn‖2Xn
+
(
C1 −

1

4δ

)
‖KGPṼnun‖

2
V

− (δ sup
m∈N
‖PṼm‖L(Xm,V ) + ‖Ǒn‖L(Xn))‖un‖2Xn

From (5.37) we have that

4(‖Mwn‖2L2 + ‖Õnun‖2L2 + ‖csρ1/2πln(q ·wn)‖2L2) ≥ ‖divwn‖2L2 .

3Before applying Young’s inequality, we estimate

2 tan(θ + τ)sgnω=
(
〈ρ(ω + iDn

b + iΩ×)w, iDn
b vn〉

)
≥ −

∣∣∣2 tan(θ + τ)sgnω=
(
〈ρ(ω + iDn

b + iΩ×)w, iDn
b vn〉

)∣∣∣.
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and therefore

‖Mwn‖2L2 + ‖Õnun‖2L2 + ‖csρ1/2πln(q ·wn)‖2L2 + ε‖ρ1/2(ω + iDn
b + iΩ×)wn‖2L2

+ |ω|
(

tan(θ + τ)− tan(θ)
)
‖(γρ)1/2wn‖2L2 & ‖wn‖2Xn

.

Altogether, we have with CB̃ > 0 independent of δ, C1 and n > n0 that

1

cos(θ + τ)
<
(
e−i(θ+τ)sgnω〈B̃nun,un〉Xn

)
≥ CB̃‖un‖

2
Xn

+
(
C1 −

1

δ

)
‖KGPṼnun‖

2
V − (δ sup

m∈N
‖PṼm‖L(Xm,V ) + ‖Ǒ‖L(Xn))‖un‖2Xn

,

Therefore, we can choose δ > 0 small enough and n1 > n0 big enough such that

(δ sup
m∈N
‖PṼm‖L(Xm,V ) + ‖Ǒ‖L(Xn)) ≤ CB̃/2,

where we recall that limn→∞ ‖Ǒ‖L(Xn) = 0. Consequently, we have for all n > n1 that

1

cos(θ + τ)
<
(
e−i(θ+τ)sgnω〈B̃nun,un〉Xn

)
≥
CB̃
2
‖un‖2Xn

+
(
C1 −

1

δ

)
‖KGPṼnun‖

2
V .

Now, we choose C1 > 1/(4δ) to obtain for n > n1

1

cos(θ + τ)
<
(
e−i(θ+τ)sgnω〈B̃nun,un〉Xn

)
≥
CB̃
2
‖un‖2Xn

,

which proves the claim.

Lemma 5.30. Assume that Assumption 5.2 is fulfilled. Then there exists an index n0 > 0 such
that the operator Bn := B̃n + K̃n is coercive for all n > n0.

Proof. The previous Lemma already established the statement for B̃n. To show that K̃n is
coercive for all n > n0, we first estimate the first terms in (5.45l) and (5.45m) respectively by

|〈c2
sρ(Id−mean− πln)(q ·wn),divw′n〉| = |〈q ·wn, (Id−mean− πln)(c2

sρ divw′n)〉|
≤ ‖q‖L∞‖wn‖L2‖(Id−mean− πln)(c2

sρdivw′n)‖L2 .

For suitable constants cτ , τ ∈ Tn, we estimate

‖(Id−mean− πln)(c2
sρdivwn)‖2L2 =

∑
τ∈Tn

‖(Id−mean− πln)(c2
sρdivwn)‖2L2(τ)

=
∑
τ∈Tn

‖(Id−mean− πln)((c2
sρ− cτ ) divwn)‖2L2(τ)

≤
∑
τ∈Tn

‖(c2
sρ− cτ ) divwn‖2L2(τ)

≤
∑
τ∈Tn

‖(c2
sρ− cτ )‖2L∞(τ)‖ divwn‖2L2(τ)

≤ (CLc2sρ)
2h2
n

∑
τ∈Tn

‖ divwn‖2L2(τ)

= (CLc2sρ)
2h2
n‖ divwn‖2L2 ,

71



5.2. H(div)-conforming discontinuous Galerkin discretization

where the last steps follow from a similar argument as in (5.41). Now, we define the seminorm

|un|2Yn := ‖vn‖2L2 + ‖KGPṼnun‖
2
V + ‖Õnun‖2L2 + ‖Mwn‖2L2 + ‖mean(q ·wn)‖2L2 ,

which allows us to estimate with constants CY,1, CY,2 > 0 with the weighted Young’s inequality

1

cos(θ + τ)
<
(
e−i(θ+τ)sgnω〈K̃nun,un〉Xn

)
≥ C2|un|2Yn − hnCY,1‖un‖

2
Xn
− CY,2‖un‖Xn |un|Yn .

Together with the previous Lemma, we obtain using the weighted Young’s inequality that

1

cos(θ + τ)
<
(
e−i(θ+τ)sgnω〈Bnun,un〉Xn

)
≥
CB̃
2
‖un‖2Xn

+ C2|un|2Yn − hnCY,1‖un‖
2
Xn
− CY,2‖un‖Xn |un|Yn

≥
(CB̃

4
− hnCY,1

)
‖un‖2Xn

+
(
C2 −

C2
Y,2

CB̃

)
|un|2Yn .

Choosing C2 > C2
Y,2/CB̃ yields the uniform coercivity of Bn for n sufficiently large.

Lemma 5.31. Let A ∈ L(X) be the operator induced by the continuous sesquilinear form a(·, ·).
There exists B,K ∈ L(X) such that B is coercive and AT = B +K. Furthermore, it holds that
Bn

P→ B.

Proof. Let u,u′ ∈X. Then we define

〈Bu,u′〉X :=

〈c2
sρdiv v, div v′〉 − 〈ρi∂bv, i∂bv′〉+ 〈c2

sρPL2
0
(q ·w), PL2

0
(q ·w′)〉 (5.50a)

− 〈ρi∂bv, (ω + i∂b + iΩ×)w′〉+ 〈ρ(ω + i∂b + iΩ×)w, i∂bv
′〉 (5.50b)

+ 〈ρ(ω + i∂b + iΩ×)w, (ω + i∂b + iΩ×)w′〉+ 〈ρ(iωγ +m)w,w′〉 (5.50c)

+ 〈v,v′〉+ C1〉KGv,KGv
′〉+ 〈Mw,Mw′〉 (5.50d)

+ C2

(
〈v,v′〉+ 〈KGv,KGv

′〉V + 〈Mw,Mw′〉+ 〈mean(q ·w),mean(q ·w′)〉
)

(5.50e)

+ 〈c2
sρq · v,div v′〉+ 〈c2

sρdiv v, q · v′〉 − 〈ρ(ω + iΩ×)v, (ω + iΩ×)v′〉 (5.50f)

− 〈ρ(ω + iΩ×)v, i∂bv
′〉 − 〈ρi∂bv, (ω + iΩ×)v′〉 − iω〈γρv,v′〉 − 〈ρmv,v′〉 (5.50g)

− 〈ρmv,w′〉 − iω〈γρv,w′〉 − 〈c2
sρPL2

0
(q · v), PL2

0
(q ·w′)〉 (5.50h)

− 〈ρ(ω + iΩ×)v, (ω + i∂b + iΩ×)w′〉 − 〈c2
sρ(div +PL2

0
q·)v,Mw′〉 (5.50i)

+ 〈c2
sρmean(q · v),divw′〉 (5.50j)

+ 〈ρmw,v′〉+ iω〈γρw,v′〉+ 〈c2
sρPL2

0
(q ·w), PL2

0
(q · v′)〉 (5.50k)

+ 〈ρ(ω + i∂b + iΩ×)w, (ω + iΩ×)v′〉+ 〈c2
sρMw, (div +PL2

0
q·)v′〉 (5.50l)

− 〈c2
sρdivw,mean(q · v′)〉 (5.50m)

− 〈c2
sρmean(q ·w), divw′〉 − 〈c2

sρ divw,mean(q ·w′)〉 − 〈c2
sρMw,Mw

′〉 (5.50n)
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and

〈Ku,u′〉X :=− (1 + C2)〈v,v′〉 − (C1 + C2)〈KGv,KGv
′〉V − (1 + C2)〈Mw,Mw′〉

− C2〈mean(q ·w),mean(q ·w′)〉.

Then, using the same argumentation as in the proof of Lemma 5.28 we have that AT =
B +K. The coercivity of B follows along the lines of Lemma 5.30. It remains to show that
limn→∞ ‖(pnB −Bnpn)u‖Xn = 0. Since Bn = AnTn −Kn and B = AT −K, we have that

‖(pnB −Bnpn)u‖Xn

≤ ‖(pnK −Knpn)u‖Xn + ‖pnAT −AnTnpn)u‖Xn

≤ ‖(pnK −Knpn)u‖Xn + ‖(pnA−Anpn)Tu‖Xn + ‖An‖L(Xn)‖(pnT − Tnpn)u‖Xn .

Since (An)n∈N is uniformly bounded, Tn
P→ T by Lemma 5.25 and An

P→ A by Thm. 5.20, we
only have to show that Kn

P→ K. For given u ∈X, we choose u′n ∈Xn, ‖u′n‖Xn = 1, n ∈ N
such that

‖(pnK −Knpn)u‖Xn ≤ |〈pnKu−Knpnu,u
′
n〉Xn |+ 1/n.

For an arbitrary subsequence N′ ⊂ N, we can choose N′′ ⊂ N′ and u′ ∈X such that u′n
L2

⇀ u′,

divu′n
L2

⇀ divu′ and Dn
bu
′
n
L2

⇀ ∂bu
′ in accordance with Lemma 5.19. On the one hand, we

compute that

〈pnKu,u′n〉Xn = 〈divKu,divu′n〉+ 〈Ku,u′n〉+ 〈∂bKu, Dn
bu
′
n〉

n∈N′′−→ 〈divKu,u′〉+ 〈Ku,u′〉+ 〈∂bKu, ∂bu′〉 = 〈Ku,u′〉X .

On the other hand, we have using the definition of v and PVn that

|〈v,v′n〉 − 〈PVnpnu,v′n〉| = |〈PV u− πdnPṼnpnu,v
′
n〉|

. |〈PV u− πdnPṼnu,v
′
n〉|+ dn(u, pnu)

. |〈PV u− πdnPV u,v′n〉|+ dn(u, pnu) + ‖(PL2
0
− πln)(q · u)‖L2

. hn‖PV u‖H1 + dn(u, pnu) + ‖(PL2
0
− πln)(q · u)‖L2 ,

where we use that ‖PṼnu−PV u‖L2 = |ṽ−v|H1 . ‖(PL2
0
−πln)(q ·u)‖L2 since ṽ, v solve (5.33)

and (5.31) respectively. Additionally, we calculate

|〈KGv,KGPṼnu
′
n〉V − 〈KGPṼnpnu,KGPṼnu

′
n〉V | = |〈KG(PV u− PṼnpnu),KGPṼnu

′
n〉V |

. |〈KG(PV u− PṼnu),KGPṼnu
′
n〉V |+ dn(u, pnu)

. ‖(PL2
0
− πln)(q · u)‖L2 + dn(u, pnu)

and as w = u− PV u, wn = un − PVnun we have that

|〈Mw,Mw′n〉−〈Mwn(pnu),Mw′n〉|
= |〈M(w −wn(pnu)),Mw′n〉|
= |〈M(u− PV u− (pnu− PVnpnu)),Mw′n〉|
. ‖u− PV u− (pnu− PVnpnu)‖H(div)

. ‖PV u− PVnpnu‖H(div) + dn(u, pnu)

. ‖pnPV u− PVnpnu‖H(div) + dn(u, pnu) + dn(PV u, pnPV u).
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With a similar argument, we obtain that

|〈mean(q ·w),mean(q ·w′n)〉−〈mean(q ·wn(pnu)),mean(q ·w′n)〉|
. ‖pnPV u− PVnu‖H(div) + dn(u, pnu) + dn(PV u, pnPV u).

Thus, we obtain with Lemma 5.16 and the pointwise convergence of πln to PL2
0

that

lim
n→∞

|〈Knpnu,u
′
n〉Xn + (1 + C2)〈v,v′n〉+ (C1 + C2)〈KGv,KGPṼnu

′
n〉V + (1 + C2)〈Mw,Mw′n〉

+ C2〈mean(q ·w),mean(q ·w′n)〉| = 0.

Let S := ∇((div +PL2
0
q ·+M)∇)−1 ∈ L(L2

0,V ). Then, we compute

〈KGv,KGPṼnu
′
n〉V = 〈K∗GKGv, PṼnu

′
n〉V

= 〈K∗GKGv, PV u
′
n〉V + 〈K∗GKGv, S(πln − PL2

0
)(q · u′n)〉V

= 〈P ∗VK∗GKGv,u
′
n〉H0(div) + 〈(πln − PL2

0
)S∗K∗GKGv, q · u′n〉L2

n∈N′′−→ 〈P ∗VK∗GKGv,u
′〉H0(div) = 〈KGv,KGv

′〉V

Therefore, we conclude that

lim
n∈N′′

(
(1 + C2)〈v,v′n〉+ (C1 + C2)〈KGv,KGPṼnu

′
n〉+ (1 + C2)〈Mw,Mw′n〉

+ C2〈mean(q ·w),mean(q ·w′n)〉
)

= −(1 + C2)〈v,v′〉+ (C1 + C2)〈KGv,KGv
′〉V − (1 + C2)〈Mw,Mw′〉

− C2〈mean(q ·w),mean(q ·w′)〉
= 〈Ku,u′〉X ,

which shows that limn∈N′′ ‖(pnK −Knpn)u‖Xn = 0 for all u ∈X.

With these results, we can apply Theorem 2.28 to obtain the following theorem.

Theorem 5.32. Under the smallness assumption on the Mach number 5.2, the sequence (ADG
n )n∈N

is regular.

Proof. Using the previous lemmata, we obtain that AnTn = Bn + Kn, where the sequence
(Kn)n∈N, Kn ∈ L(Xn) is compact and there exists a bijective operator B ∈ L(X) such that
limn→∞ ‖Bnpnu− pnBu‖Xn = 0 for all u ∈ X. Thus, we can apply Thm. 2.28 to conclude
that (ADG

n )n∈N is regular.

5.2.3.3 Convergence results

Theorem 5.33. Assume that Assumption 5.2 is satisfied and let f ∈ L2. Further, let u ∈ X
be the solution to a(u,u′) = 〈f ,u′〉 for all u′ ∈ X. Then there exists n0 > 0 such that
for all n > n0 the solution un ∈ Xn to an(un,u

′
n) = 〈f ,u′n〉 for all u′n ∈ Xn exists and

limn→∞ dn(u,un) = 0. Additionally, if u ∈ H2+s, ρ ∈ W 1+s,∞ and b ∈W 1+s,∞ with s > 0,
then dn(u,un) . h

min(1+s,k)
n + h

min(s,l)
n .
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Proof. A is injective due to Lemma 4.4, An
P→ A due to Thm. 5.20 and (An)n∈N is regular

due to Thm. 5.32. To apply the convergence theorem 2.17, we have to still show that the
right-hand side of the discrete problem converges to the right-hand side of the continuous
problem. To be precise, let g ∈X be such that 〈g,u′〉X = 〈f ,u′〉 for all u′ ∈X and gn ∈Xn

be such that 〈gn,u′n〉Xn = 〈f ,u′n〉 for all u′n ∈Xn. Then we have to show that gn
P→ g. To this

end, we choose u′n ∈ Xn, ‖u′n‖Xn = 1 such that ‖png − gn‖Xn ≤ |〈png − gn,u′n〉Xn |+ 1/n.
For an arbitrary subsequence N′ ⊂ N, we choose u′ ∈X and a subsubsequence N′′ ⊂ N′ as in
Lemma 5.19 and obtain with the definition of gn and pn that

〈png − gn,u′n〉Xn = 〈png,u′n〉X − 〈f ,u′n〉 = 〈div g,u′n〉+ 〈g,u′n〉+ 〈∂bg, Dn
bu
′
n〉 − 〈f ,u′n〉

n→∞−→ 〈g,u′〉X − 〈f ,u′〉 = 0.

Thus, gn
P→ g. Therefore Thm. 2.17 yields the existence of an index n0 > 0 such that for all

n > n0 there exist discrete solutions un ∈Xn such that un
P→ u. We estimate

dn(u,un) ≤ dn(u, pnu) + ‖pnu− un‖Xn . dn(u, pnu) + ‖An(pnu− un)‖Xn ,

where we exploit that ‖A−1
n ‖L(Xn) is uniformly bounded for n > n0 due to the stability of

(An)n∈N. Since limn→∞ dn(u, pnu) = 0 by Lemma 5.16 and limn→∞ ‖pnu− un‖Xn = 0 since
un

P→ u, the first inequality implies that limn→∞ dn(u,un) = 0. Furthermore, using Lemma
5.15 for the first term on the right-hand side yields dn(u,un) . h

min(1+s,k)
n . For the second

term, we compute similar to the proof of Thm. 3.22 that

‖An(pnu− un)‖Xn = sup
‖u′n‖Xn=1

|an(pnu− un,u′n)|

= O(dn(u, pnu), n→∞)

+ sup
‖u′n‖Xn=1

|〈c2
sρdivu,divu′n〉 − 〈ρ(ω + i∂b + iΩ×)u, (ω + iDn

b + iΩ×)u′n〉

+ 〈divu,∇p · u′n〉+ 〈∇p · u,divu′n〉+ 〈(Hess(p)− ρHess(φ))u,u′n〉
− iω〈γρu,u′n〉 − 〈f ,u′n〉L2 |.

In the following, we want to use the fact that u ∈ X solves Galbrun’s equation (4.1). With
integration by parts, we have that

〈c2
sρdivu, divu′n〉 = −〈∇(c2

sρ divu),u′n〉, 〈∇p · u,divu′n〉 = −〈∇(∇p · u),u′n〉.

We note that due to the assumptions that u ∈ H2, cs, ρ ∈ W 1,∞ and p ∈ W 2,∞, we have
that ∇(c2

sρdivu),∇(∇p · u) ∈ L2. Now, we also want to apply partial integration to the
discrete differential operator Dn

b . To this end, let ψn ∈ Qn be a suitable H1 projection of
ρ(ω + i∂b + iΩ×)u, e.g., ψn = Jn(ρ(ω + i∂b + iΩ×)u) with Jn as in [EG16, Eq. (6.4)]. Then,
we obtain

〈ρ(ω + i∂b + iΩ×)u, Dn
bu
′
n〉 = 〈ψn, Dn

bu
′
n〉+ 〈ρ(ω + i∂b + iΩ×)u−ψn, Dn

bu
′
n〉.
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Furthermore, we compute

〈ψn, Dn
bu
′
n〉 =

∑
τ∈Tn

〈ψn, ∂bu′n +Rnu
′
n〉L2(τ) =

∑
τ∈Tn

〈ψn, ∂bu′n〉L2(τ) − 〈JψnK, Ju′nKb〉F int
n

=
∑
τ∈Tn

〈ψn, ∂bu′n〉L2(τ) − 〈ψn, (ν · b)u′n〉L2(∂τ)

= −〈(∂b + div(b))ψn,u
′
n〉

= −〈(∂b + div(b))ρ(ω + i∂b + iΩ×)u,u′n〉
+ 〈(∂b + div(b))(ρ(ω + i∂b + iΩ×)u−ψn),u′n〉

= −〈ρ∂b(ω + i∂b + iΩ×)u,u′n〉 − 〈div(ρb)(ω + i∂b + iΩ×)u,u′n〉
+ 〈(∂b + div(b))(ρ(ω + i∂b + iΩ×)u−ψn),u′n〉.

Thus, since u fulfills (4.1), we get due to the properties of Jn and (5.18) that

sup
‖u′n‖Xn=1

|〈c2
sρdivu, divu′n〉 − 〈ρ(ω + i∂b + iΩ×)u, (ω + iDn

b + iΩ×)u′n〉+ 〈divu,∇p · u′n〉

+ 〈∇p · u,divu′n〉+ 〈(Hess(p)− ρHess(φ))u,u′n〉 − iω〈γρu,u′n〉 − 〈f ,u′n〉L2 |
. ‖ρ(ω + i∂b + iΩ×)u−ψn‖H1 . hmin(s,l)

n .

Thus, we conclude that dn(u,un) . h
min(1+s,k)
n + h

min(s,l)
n .

5.2.4 Hybrid H(div)-conforming discretization

In Section 3.6 we discussed the computational costs associated with the implementation of
the lifting operator and the possibility of reducing the computational costs by hybridization.
We recall that hybridization allows us to eliminate interior degrees of freedom through static
condensation, see Remark 3.25, which reduces the computational costs. Furthermore, we
recall that hybridization reduces the dimension of the system matrices associated with solving
the discrete problem involving the lifting operator significantly, see Fig. 3.8. To ease the
computational burden of solving (5.24), we want to introduce a hybrid version of the H(div)-
conforming DG scheme. We note that we will not analyze the hybrid scheme in detail and only
discuss the main ideas. We proceed similarly as in Section 3.5 and introduce a hybrid version
of the lifting operator. To ensure that the HDG scheme remains H(div)-conforming, we use
the exactly divergence-free HDG method as proposed in [Leh10; LS16]. The main idea is to
distinguish between normal- and tangential continuity and to introduce facet unknowns only
for the tangential components, see Fig. 5.4. To this end, we denote by Ptang := Id−νF ⊗ νF
the tangential projection and define

F tang
n := {uF ∈ L2

tang(Fn) : uF ∈ Pk(F ),uF · νF = 0 ∀F ∈ Fn}, (5.52)

where L2
tang(Fn) := {u ∈ L2(Fn) : u · νF = 0}. Then, with Xn being defined by (5.17a), we

define the discrete space
XHDG
n = Xn × F tang

n .

In the following, we define the jump operator J·Kb,tang := JPtangunKb, where Ptang is the
tangential projection defined above. Then, for τ ∈ Tn, we define the local HDG lifting operator
rlτ : Xn → Qn through

〈rlτun,ψn〉 = −〈JunKb,tang,ψn〉L2(∂τ) ∀ψn ∈ Qn. (5.53)
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Chapter 5. Existing discretizations for Galbrun’s equation

(a) H(div)-conforming DG (b) H(div)-conforming HDG

Figure 5.4: Comparison H(div)-DG and H(div)-HDG, see [LS16, Fig. 1] or [Leh10, Fig. 2.1.1]

Then, we set Rl
n :=

∑
τ∈Tn r

l
τ and define the discrete differential operator

(Dn
bun)|τ := ∂b(un|τ ) +Rl

nun for all τ ∈ Tn. (5.54)

Then, we consider the following problem: Find un ∈XHDG
n such that

aHDG
n (un,u

′
n) = 〈f ,u′n〉 ∀u′n ∈XHDG

n ,

where the sesquilinear form aHDG
n (·, ·) is defined through

aHDG
n (un,u

′
n) :=〈c2

sρdivun,divu′n〉 − 〈ρ(ω + iDn
b + iΩ×)un, (ω + iDn

b + iΩ×)u′n〉
+ 〈divun,∇p · u′n〉+ 〈∇p · un,divu′n〉+ 〈(Hess(p)− ρHess(φ))un,u

′
n〉

− iω〈γρun,u′n〉.
(5.55)

To interpret the HDG scheme as a discrete approximation scheme similar techniques as in
Section 5.2.2 should be considered. In particular, we require a suitable compactness result
for the discrete differential operator Dn

b , which can be shown with the same techniques as in
[KCR21, Thm. 4.3].

Lemma 5.34. Let (un)n∈N, un ∈ Xn, be such that supn∈N ‖un‖Xn < ∞. Then, there exists

u ∈X and a subsequence N′ ⊂ N such that un
L2

⇀ u, divun
L2

⇀ divu and Dn
bun

L2

⇀ ∂bu.

To establish weak T-coercivity, similar techniques as discussed in Section 5.2.3.2 should be
applicable. Note, however, that the facet variable has to be incorporated suitably. We leave
further analysis of the H(div)-conforming HDG scheme to future work.
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CHAPTER 6

A fully discontinuous Galerkin discretization of
Galbrun’s equation

This section is devoted to the introduction and analysis of a fully discontinuous Galerkin
discretization for Galbrun’s equation. For the analysis, we make use of the concepts introduced
in Part I of the thesis. After introducing the discretization scheme, we show that it can be
interpreted as a discrete approximation scheme and that the sequence of approximations
is stable. To this end, we utilize the weak T-compatibility conditions from Thm. 2.28. We
derive optimal order convergence estimates. Finally, we briefly discuss a hybrid version of
the discretization. This chapter builds upon and follows the structure of the analysis of the
H(div)-conforming discontinuous Galerkin discretization by Halla [Hal23] that we reviewed
in Section 5.2.

Contents of the chapter

6.1 Formulation of the scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2 Interpretation as discrete approximation scheme . . . . . . . . . . . . . . . . . 81
6.3 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.4 Hybridization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.1 Formulation of the scheme

As before, let O ⊂ R3 be a bounded and convex Lipschitz polyhedron. Recall that we want to
develop a fully discontinuous Galerkin discretization for the damped time-harmonic Galbrun’s
equation which reads as

−∇(ρc2
s divu) + (divu)∇p−∇(∇p · u)− ρ(ω + i∂b + iΩ×)2u

+ (Hess(p)− ρHess(φ))u+ γρ(−iω)u = f in O, (6.1a)

ν · u = 0 on ∂O, (6.1b)

for given density ρ, pressure p, gravitational potential φ, sound speed cs, damping coefficient
γ, wave number ω, background velocity b, angular velocity of the frame Ω and source
term f . As in the previous chapters, we assume that cs, ρ ∈ W 1,∞(O,R), γ ∈ L∞(O,R),
p, φ ∈ W 2,∞(O,R) and that b ∈ L∞(O,R) is compactly supported in O. Furthermore, we
assume that there exist cs, cs, ρ, ρ, γ, γ ∈ R>0 such that

cs ≤ cs(x) ≤ cs, ρ ≤ ρ(x) ≤ ρ, γ ≤ γ(x) ≤ γ for all x ∈ O.

As in the previous chapters, we denote the L2 and L2-scalar products by 〈·, ·〉.
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Chapter 6. A fully discontinuous Galerkin discretization of Galbrun’s equation

Further, recall from (4.7) that the continuous sesquilinear form a(·, ·) is given by

a(u,u′) :=〈c2
sρdivu,divu′〉 − 〈ρ(ω + i∂b + iΩ×)u, (ω + i∂b + iΩ×)u′〉

+ 〈divu,∇p · u′〉+ 〈∇p · u, divu′〉+ 〈(Hess(p)− ρHess(φ))u,u′〉
− iω〈γρu,u′〉,

(6.2)

and the continuous weak formulation of (6.1) reads as: Find u ∈X such that

a(u,u′) = 〈f ,u′〉 for all u′ ∈X,

where X is the Hilbert space defined in (4.3). In the following, let (Tn)n∈N be a sequence of
shape regular simplicial triangulations of O and Fn (F int

n ) be the collection of (interior) facets
of Tn. For τ ∈ Tn and F ∈ Fn, we denote by hτ and hF the diameters of τ and F , respectively,
and define h : Fn → R through h|F := hF . Additionally, we define hn := maxτ∈Tn hτ and
assume that limn→∞ hn = 0. We introduce the abbreviations

〈·, ·〉Tn :=
∑
τ∈Tn

〈·, ·〉τ , 〈·, ·〉Fn :=
∑
F∈Fn

〈·, ·〉F .

Now, we define Xn to be the space of discontinuous polynomials of degree k, k ∈ N, k ≥ 1,
that is

Xn := {un ∈ L2(O) : un|τ ∈ Pk(τ) for all τ ∈ Tn}.

The scalar product on Xn will be specified later. We note that due to the discontinuity of
un ∈Xn, we have that Xn 6⊂X. In addition to the weighted jump-operator J·Kb defined in
Section 5.2, we also consider the normal jump operator J·Kν . To be precise, we define

JuKb := (b · ν1)u1 + (b · ν2)u2,

JuKν := u1 · ν1 + u2 · ν2.

Here, ν1 and ν2 denote the outer unit normals of the two elements τ1, τ2 sharing the common
facet F ∈ F int

n and with ui we denote the traces of u|τi , i = 1, 2. On boundary facets
F ∈ Fn ∩ ∂O, we define JuKb = tr((b · ν)u) and JuKν = tr(ν · u).
The formulation of a DG scheme for (6.1) follows the standard argumentation as described in
Section 3.4. That is, we apply partial integration locally on each element τ ∈ Tn and obtain
similar to (4.5) that

−〈∇(ρc2
s divun),u′n〉τ = 〈c2

sρdivun,divu′n〉τ − 〈c2
sρdivun,u

′
n · ν〉∂τ , (6.3a)

−〈∇(∇p · un),u′n〉τ = 〈∇p · un, divu′n〉τ − 〈∇p · un,u′n · ν〉∂τ . (6.3b)

We note that in (4.5), we applied partial integration on the whole domain O such that the
boundary terms vanished due to the boundary conditions. Here, we use the normal jump-
operator J·Kν and the average operator {{·}} to reformulate the boundary terms of (6.3). After
summing over all elements τ ∈ Tn, we obtain the terms

〈c2
sρ divun,divu′n〉Tn − 〈ρc2

s{{divun}}, Ju′nKν〉Fn − 〈ρc2
sJdivunKν , {{u′n}}〉Fn (6.4)

and
〈∇p · un, divu′n〉Tn − 〈{{∇p · un}}, Ju′nKν〉Fn − 〈JunKν , {{∇p · u′n}}〉Fn , (6.5)

where the last terms in (6.4) and (6.5) are added for symmetry and also correspond intuitively
to the term 〈∇p · un,divu′n〉 arising in an(·, ·). If we added a stabilization term of the form

〈c2
sρ
αν
h

JunKν , Ju′nKν〉Fn
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6.1. Formulation of the scheme

to (6.4) and (6.5), we would obtain a classical symmetric interior penalty (SIP) method for the
divergence terms. However, we will refrain from doing so at this point and rather reformulate
the terms (6.4) and (6.5) with the help of a discrete divergence operator divnν that we will
introduce in the following. We recall from Section 5.2 that we denote for lb ∈ N≥1

Qn := {ψn ∈ L2 : ψn|τ ∈ P lb(τ) for all τ ∈ Tn}. (6.6)

In the following, we will denote by Rlb
n ∈ Qn the lifting operator defined through the local

lifting operators (5.20) which acts with respect to the J·Kb-jump operator. We recall the
definition of the discrete differential operator Dn

b : Xn → Qn through

(Dn
bun)|τ := ∂b(un|τ ) +Rlb

nun for all τ ∈ Tn.

Furthermore, we recall that by application of the discrete trace inequality (A.14), we have that

‖Rlb
nun‖2L2 .

∑
F∈Fn

h−1
F ‖JunKb‖

2
L2(F ). (6.7)

Let us stress that, in contrast to the notation in [Hal23], we write these operators in bold to
emphasize that they are vector-valued. In order to define a discrete version of the divergence,
we require a scalar-valued lifting operator associated with the normal jump J·Kν . For lν ∈ N≥1,
we set

Qn := {ψn ∈ L2 : ψn ∈ P lν (τ) for all τ ∈ Tn}.

Then, for η ∈W 1,∞ we define the local lifting operator rFn ∈ Qn to be the solution to

〈ηrFnun, ψn〉 = −〈ηJunKν , {{ψn}}〉L2(F ) for all ψn ∈ Qn (6.8)

for all un ∈ Xn and F ∈ Fn. As before, we define the global version of this operator by
summing over all facets, i.e. we define Rlνn :=

∑
F∈Fn r

F
n . We note that the discrete trace

inequality (A.14) immediately yields the boundedness of the lifting operator

‖η1/2Rlνn un‖2L2 ≤ C2
dtN∂

∑
F∈Fn

h
−1/2
F ‖η1/2JunKν‖2L2(F ), (6.9)

where N∂ := maxτ∈Tn card{F ∈ Fn : F ⊂ ∂τ}, see also [DE12, Lem. 4.34]. Then, we define
the discrete divergence operator divnν : Xn → Qn through

(divnν un)|τ := divun +Rlνn un for all τ ∈ Tn. (6.10)

We note that a similar construction for a discrete divergence operator can also be found in
[DE10]. Furthermore, let us stress that we differentiate between the degree of the vector-
valued and the scalar-valued lifting operator, i.e. we do not necessarily assume that lb = lν .
However, the convergence rates in Thms. 6.26 and 6.38 indicate that the preferred choice
should be lb = lν = k to obtain an optimal order of convergence.
Then, we consider the discrete problem: Find un ∈Xn such that

an(un,u
′
n) = 〈f ,u′n〉 for all u′n ∈Xn, (6.11)

where the sesquilinear form an : Xn ×Xn → C is defined through

an(un,u
′
n) :=〈c2

sρdivnν un, divnν u
′
n〉 − 〈ρ(ω + iDn

b + iΩ×)un, (ω + iDn
b + iΩ×)u′n〉

+ 〈divnν un,∇p · u′n〉+ 〈∇p · un, divnν u
′
n〉

+ 〈(Hess(p)− ρHess(φ))un,u
′
n〉 − iω〈γρun,u′n〉+ sβn(un,u

′
n).

(6.12)
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Chapter 6. A fully discontinuous Galerkin discretization of Galbrun’s equation

Here, we define the stabilization term sβn : Xn ×Xn → C through

sβn(un,u
′
n) := 〈c2

sρ
αν
hF

JunKν , Ju′nKν〉Fn − β〈c2
sρR

lν
n (un), Rlνn (u′n)〉. (6.13)

where αν > 0 is a stabilization parameter and β ∈ {0, 1}. As discussed in Remark 6.1, the
choice of β allows us to choose between a standard SIP method (β = 1) and a lifting stabilized
method (β = 0) similar to a Bassi Rebay formulation [BR97; Bas+97] with an additional jump-
jump stabilization term. Recall from that Section 5.2 that the discrete differential operator Dn

b

was mainly introduced to avoid choosing a stabilization parameter αb, which would lead to
stronger restrictions on the Mach number ‖c−1

s b‖2L∞ , see also [Hal23, Rem. 21]. In contrast,
the choice of the stabilization parameter αν does not depend on the background flow b and
therefore does not lead to more restrictive assumptions on the Mach number. We still chose
to introduce a lifting operator Rlνn associated with the normal jump J·Kν to stay consistent
with the analysis framework applied in Section 5.2. The introduction of the stabilization term
sβn(·, ·) with the parameter β ∈ {0, 1} allows us to conveniently analyze both, a SIP and a
lifting stabilized, method for the diffusion operator.
For un,u′n ∈Xn, we define the following scalar product on Xn

〈un,u′n〉Xn := 〈divnν un,divnν u
′
n〉+ 〈un,u′n〉+ 〈Dn

bun,D
n
bu
′
n〉+ 〈h−1

F JunKν , Ju′nK〉Fn (6.14)

and denote by ‖ · ‖Xn := 〈·, ·〉1/2Xn
the induced norm. In particular, we denote for un ∈Xn

‖un‖2Fn,1/2,ν :=
∑
F∈Fn

h−1
F ‖JunKν‖

2
L2(F ).

Due to the boundedness of the lifting operators, cf., (6.7) and (6.9), we have for all un ∈Xn

that

‖un‖2Xn
. ‖un‖2X,Tn +

∑
F∈Fn

h−1
F ‖JunKν‖

2
L2(F ) +

∑
F∈Fn

h−1
F ‖JunKb‖

2
L2(F ), (6.15)

where ‖un‖2X,Tn :=
∑

τ∈Tn(‖ divun‖2L2(τ) + ‖un‖2L2 + ‖∂bun‖2L2) is the broken X-norm.

Remark 6.1 (The role of β). Let us elaborate on the role of β ∈ {0, 1} in the definition (6.13)
of the stabilization term sβn(·, ·). By definition of the lifting operator Rlνn , we have that

〈c2
sρdivnν un,divnν u

′
n〉 = 〈c2

sρdivun, divu′n〉 − 〈c2
sρJunKν , {{divu′n}}〉Fn

− 〈c2
sρ{{divun}}, JunKν〉Fn + 〈c2

sρR
lν
n un, R

lν
n u
′
n〉.

Thus, if β = 1, the lifting term 〈c2
sR

lν
n un, R

lν
n u
′
n〉 cancels out and we are left with a standard SIP

formulation for the diffusion operator. In contrast, if β = 0, the lifting term remains. While the
latter method relaxes the conditions on the stabilization parameter αν slightly, both methods
require that αν is chosen large enough to guarantee coercivity of the sesquilinear form an(·, ·).
We will compare both methods computationally with the numerical experiments in Chapter 7.

6.2 Interpretation as discrete approximation scheme

The first step to apply the framework introduced in Chapter 2 is to show that we can interprete
the proposed discretization as a discrete approximation scheme in the sense of Definition 2.7.
Therefore, we will follow the same steps as in the H(div)-conforming case from Section 5.2.2,
but account for the introduction of the discrete divergence operator.
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6.2. Interpretation as discrete approximation scheme

First of all, we define a suitable projection operator pn : X →Xn. For u ∈X, let pnu ∈Xn

be the solution to

〈pnu,u′n〉Xn = 〈divu,divnν u
′
n〉L2 + 〈u,u′n〉L2 + 〈∂bu,Dn

bu
′
n〉L2 for all u′n ∈Xn. (6.16)

Clearly, pn is a linear operator and is bounded, since ‖pnu‖2Xn
≤ ‖u‖X‖pnun‖Xn implies that

‖pn‖L(X,Xn) ≤ 1. Hence, it holds that pn ∈ L(X,Xn). Furthermore, for all u′n ∈Xn we have
the following Galerkin orthogonality property

0 =〈divu− divnν pnu,divnν u
′
n〉L2 + 〈u− pnu,u′n〉L2

+ 〈∂bu−Dn
bpnu, D

n
bu
′
n〉L2 + 〈JpnuKν , Ju′nKν〉Fn .

(6.17)

We recall from Section 5.2.2 that the J·Kb-jump is not necessarily well-defined for functions
u ∈X which is why we introduced a suitable distance function dn(·, ·) allowing us to analysis
the error u− un for u ∈X, un ∈Xn. Here, we face the same technical issue for the normal
jump J·Kν , as the L2-trace of u ∈ X is not necessarily well-defined. Therefore, we define a
distance function dn : X ×Xn → R similar to the one introduced in Section 5.2.2 which also
takes into account the discrete divergence divnν and the normal jump contribution. For u ∈X
and un ∈Xn, we define

dn(u,un)2 := ‖ divu− divnν un‖2L2 + ‖u− un‖2L2 + ‖∂bu−Dn
bun‖2L2 + ‖un‖2Fn,1/2,ν .

We note that dn(·, ·) satisfies the following triangle inequalities

dn(u,un) ≤ dn(ũ,un) + ‖ũ− u‖X , dn(u,un) ≤ dn(u, ũn) + ‖ũn − un‖Xn

for all u, ũ ∈X and un, ũn ∈Xn.

In the following, let πdn : Hs → [Pk(Tn)]d ∩H(div), s > 1/2, and πln : L2 → Pk−1(Tn) be the
interpolation operators defined in Section 5.2 such that div πdn = πln div. For s > 1/2 and
τ ∈ Tn, we denote by πτ : Hs(τ) → Pk(τ) the canonical local interpolation operator and
by πn : Hs → Xn, πn|τ := πτ , τ ∈ Tn, its global version. We recall there hold the following
estimates for all v ∈Hr(τ), r ∈ [1, k + 1], m ∈ [0, r]

|v − πnv|Hm(τ) ≤ Caprh
r−m
τ |v|Hr(τ), (6.18a)

‖v − πnv‖L2(∂τ) ≤ Cabh
r−1/2
τ |v|Hr(τ). (6.18b)

Lemma 6.2. For each u ∈H1
ν0 it holds that dn(u, pnu) ≤ dn(u, πnu).

Proof. Using (6.17), we compute with the Cauchy-Schwarz inequality

dn(u, pnu)2 = ‖ divu− divnν pnu‖2L2 + ‖u− pnu‖2L2 + ‖∂bu−Dn
bpnu‖2L2 + ‖pnu‖2Fn,1/2,ν

= 〈divu− divnν pnu,divu− divnν πnu〉L2 + 〈u− pnu,u− πnu〉L2

+ 〈∂bu−Dn
bpnu, ∂bu−Dn

bπnu〉L2 + 〈h−1
F JpnuKν , JπnuKν〉Fn

≤ dn(u, pnu)dn(u, πnu).

Dividing by dn(u, pnu) yields the claim.

Lemma 6.3. For each u ∈H1
ν0 ∩H1+s, s > 0, it holds that dn(u, πnu) . hsn‖u‖H1+s .
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Proof. We estimate ‖u−πnu‖Fn,1/2,ν . Cdth
−1/2
n ‖u−πnu‖L2 with the discrete trace inequality

and

‖∂bu−Dn
bπnu‖L2(τ) ≤ ‖∂bu− ∂bπnu‖L2(τ) + ‖Rl

nπnu‖L2(τ),

‖divu− divnν πnu‖L2(τ) ≤ ‖divu− div πnu‖L2(τ) + ‖Rlnπnu‖L2(τ).

Therefore the claim follows with (6.9) and (6.18).

Lemma 6.4. For each u ∈X, it holds that limn→∞ dn(u, pnu) = 0.

Proof. This follows with the same argumentation as in [Hal23, Lem. 5] (or as in Lemma 3.15
with ‖ · ‖Xn replaced by dn(·, ·)). The key ingredient is the density of C∞0 in X [HLS22, Thm.
6] and an application of the previous two lemmata.

Lemma 6.5. For each u ∈H1
ν0, we have that limn→∞ dn(u, πnu) = 0.

Proof. This follows from the same techniques as in the proof of [Hal23, Lem. 6] with
considering divnν instead of div.

Lemma 6.6. For each u ∈X it holds that limn→∞ ‖pnu‖Xn = ‖u‖X .

Proof. As in the proof of [Hal23, Lem. 7], we compute

‖pnu‖2Xn
= 〈pnu, pnu〉Xn = 〈divu,divnν pnu〉L2 + 〈u, pnu〉L2 + 〈∂bu, Dn

bpnu〉L2

= ‖u‖2X + 〈divu, divnν pnu− divu〉L2 + 〈u, pnu− u〉L2 + 〈∂bu, Dn
bpnu− ∂bu〉L2

Furthermore, we compute that

|〈divu,divnν pnu− divu〉L2 + 〈u, pnu− u〉L2 + 〈∂bu, Dn
bpnu− ∂bu〉L2 | ≤ ‖u‖Xdn(u, pnu).

Thus, the claim follows, since limn→∞ d(u, pnu) = 0 by Lemma 6.5.

We extend the compactness result from Lemma 5.19, or [Hal23, Lem. 8], to include the
discrete divergence operator defined in (6.10).

Lemma 6.7. Let (un)n∈N, un ∈Xn, satisfy supn∈N ‖un‖Xn <∞. Then there exists u ∈X and

a subsequence N′ ⊂ N such that un
L2

⇀ u, divnν un
L2

⇀ divu and Dn
bun

L2

⇀ ∂bu.

Proof. Due to Lemma 5.19, we only have to consider the statement for the discrete divergence
operator divnν . Since divnν un is a bounded sequence in L2, there exists a subsequence N′ and

q ∈ L2 such that divnν un
L2

⇀ q. It remains to show that q = divu. Let ψ ∈ C∞0 and ψn be the
lowest order standard H1-interpolant of ψ on Tn. Then, we compute

〈divnν un, ψ〉 = 〈divnν un, ψ − ψn〉+ 〈divnν un, ψn〉

= 〈divnν un, ψ − ψn〉+
∑
τ∈Tn

〈divun, ψn〉L2(τ) − 〈JunKν , {{ψn}}〉Fn

= 〈divnν un, ψ − ψn〉+
∑
τ∈Tn

〈divun, ψn〉L2(τ) − 〈ν · un, ψn〉L2(∂τ)

= 〈divnν un, ψ − ψn〉 − 〈un,∇ψn〉
= −〈un,∇ψ〉+ 〈divnν un, ψ − ψn〉+ 〈un,∇(ψ − ψn)〉.

Since ‖ψ − ψn‖H1 . hn‖ψ‖H2 and ‖un‖Xn . 1, it follows that

〈q, ψ〉 = lim
n→∞

〈divnν un, ψ〉 = lim
n→∞

−〈un,∇ψ〉 = −〈u,∇ψ〉,

and thus q = divu.
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In the following, we denote by A ∈ L(X) the operator induced by the continuous sesquilin-
ear form a(·, ·) defined in (4.7) and by An ∈ L(Xn) the operator induced by the discrete
sesquilinear form an(·, ·) defined by (6.12). The next theorem shows that An

P→ A.

Theorem 6.8. For each u ∈X, we have that limn→∞ ‖Anpnu− pnAu‖Xn = 0.

Proof. Let u ∈ X. Since Xn is Hilbert, we can choose a sequence (un)n∈N, un ∈ Xn, with
‖un‖Xn = 1 such that ‖Anpnu−pnAu‖Xn ≤ |〈Anpnu−pnAu,un〉Xn |+1/n. For an arbitrary
subsequence N′ ⊂ N, we choose a subsubsequence N′′ ⊂ N′ and u′ ∈ X in accordance with
Lemma 6.7. Then, we compute

lim
n∈N′′
〈pnAu,un〉Xn = lim

n∈N′′

(
〈divAu,divnν un〉L2 + 〈Au,un〉L2 + 〈∂bAu, Dn

bun〉L2

)
= 〈divAu, divu′〉L2 + 〈Au,u′〉L2 + 〈∂bAu, ∂bu′〉L2

= 〈Au,u′〉X = a(u,u′)

Furthermore, we have that

〈Anpnu,un〉Xn = an(pnu,un)

= 〈c2
s divnν pnu,divnν un〉 − 〈ρ(ω + iDn

b + iΩ×)pnu, (ω + iDn
b + iΩ×)un〉

+ 〈divnν pnu,∇p · un〉+ 〈∇p · pnu,divnν un〉+ 〈(Hess(p)− ρHess(φ))pnu,un〉
− iω〈γρpnu,un〉+ sβn(pnu,un)

= 〈c2
s divu,divnν un〉 − 〈ρ(ω + i∂b + iΩ×)u, (ω + iDn

b + iΩ×)un〉
+ 〈divu,∇p · un〉+ 〈∇p · u,divnν un〉+ 〈(Hess(p)− ρHess(φ))u,un〉
− iω〈γρu,un〉

 (6.19)

+ 〈c2
s divnν pnu− divu, divnν un〉

− 〈ρ((ω + iΩ×)(pnu− u) +Dn
bpnu− ∂bu), (ω + iDn

b + iΩ×)un〉
+ 〈divnν pnu− divu,∇p · un〉+ 〈∇p · (pnu− u),divnν un〉
+ 〈(Hess(p)− ρHess(φ))(pnu− u),un〉 − iω〈γρ(pnu− u),un〉
+ sβn(pnu,un)

 (6.20)

By choice of the subsubsequence N′′ and Lemma 6.7, it holds that limn∈N′′ (6.19) = a(u,u′).
Furthermore, due to (6.9) and ‖un‖Xn = 1 we have that |sβn(pnu,un)| . ‖pnu‖Fn,1/2,ν . Thus,
with an application of the Cauchy-Schwarz inequality we have that |(6.20)| . dn(u, pnu) and
hence limn∈N′′ (6.20) = 0 by Lemma 6.4. Therefore, we conclude that

lim
n→∞

‖Anpnu− pnAun‖Xn = lim
n∈N′′

‖Anpnu− pnAun‖Xn = 0.

The previous results show that (Xn, pn, An) indeed constitutes a discrete approximation
scheme of (X, A) in the sense of Definiton 2.7. Therefore, we can apply the theory developed
in Chapter 2, and in particular the convergence theorem 2.17 if we show that the sequence
(An)n∈N is regular.

6.3 Convergence Analysis

In this section, we want to analyze the convergence of the proposed discrete approximation
scheme. To show regularity, we want to utilize the weak T-compatibility condition from
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Chapter 6. A fully discontinuous Galerkin discretization of Galbrun’s equation

Thm. 2.28 that was introduced in [HLS22]. Let us recall the construction of the continuous
T -operator from Section 5.2. For u ∈ H0(div), let v ∈ H2 be the solution to

(div +PL2
0
q ·+M)∇v = (div +PL2

0
q ·+M)u in O, (6.21a)

ν · ∇v = 0 on ∂O. (6.21b)

Then, for u ∈ X ⊂ H0(div), we define v = PV u = ∇v and w = u − v. The operator
T ∈ L(X) is then defined through Tu := v − w. Recall that with this construction, the
operator A associated with the continuous bilinear form is weakly T-coercive.
In the following, we want to construct a discrete operator Tn ∈ L(Xn) such that the weak
T-compatibility conditions from Thm. 2.28 are satisfied. To this end, we want to adjust the
construction in (5.33) to the fully discontinuous case. The main idea is to decompose the
functions vn into an H(div)-conforming part and a remainder that accounts for the jumps.
For the latter, we require the following construction from [Ale22, Chap. 4.3.1]. We define
the spaces Fkn :=

∏
F∈Fn P

k(F ) and Qk−1
n := {ψn ∈ L2 : ψn|τ ∈ Pk−1(τ) for all τ ∈ Tn}.

Furthermore, we define for all ũn, ũ′n ∈Xn the sesquilinear form ãn(·, ·) : Xn ×Xn → C by

ãn(ũn, ũ
′
n) :=

∑
τ∈Tn

〈Dn
b ũn,D

n
b ũ
′
n〉L2(τ) + 〈ũn, ũ′n〉L2(τ)

Then, we consider the following auxiliary problem: For given g ∈ L2 and f ∈ L2(Fn), find
(ũn, p̃n, σ̃n) ∈Xn ×Qk−1

n ×Fkn such that

ãn(ũn, ũn
′) + dn(ũ′n, p̃n) + en(ũ′n, σ̃n) = 0 ∀ũ′n ∈Xn, (6.22a)

dn(ũn, p̃
′
n) =

∑
τ∈Tn

〈g, p̃′n〉L2(τ) ∀p̃′n ∈ Qk−1
n , (6.22b)

en(ũn, σ̃
′
n) =

∑
F∈Fn

〈f, σ̃′n〉L2(F ) ∀σ̃′n ∈ Fkn , (6.22c)

where dn(ũn, p̃n) :=
∑

τ∈Tn〈div ũn, p̃n〉L2(τ) and en(ũn, σ̃n) :=
∑

F∈Fn〈JũnKν , σ̃n〉L2(F ).

Lemma 6.9. The problem (6.22) is well-posed and there holds the estimate

‖ũn‖2Xn
+
∑
τ∈Tn

‖p̃n‖2L2(τ) +
∑
F∈Fn

h‖σ̃n‖2L2(F ) . ‖g‖
2
L2 + ‖f‖Fn,1/2,ν . (6.23)

Proof. For ũn ∈ ker dn ∩ ker en, we have that div ũn = 0, JũnKν = 0 and consequently
Rlνn ũn = 0. Thus, we have that ãn(ũn, ũn) = ‖ũn‖2Xn

for ũn ∈ ker dn ∩ ker en, which makes
ãn(·, ·) coercive on ker dn∩ker en. Since dn(·, ·) is inf-sup stable on ker en [Ale22, Sec. 4.2] and
en(·, ·) is inf-sup stable [Ale22, Prop. 4.3.3], the claim follows from [Ale22, Thm. 2.2.8].

This allows us to construct a unique function IJ·Kν (un) ∈ Xn for un ∈ Xn such that
JIJ·Kν (un)Kν = JunKν and div IJ·Kν (un)|τ = −Rlνn un|τ for all un ∈Xn and τ ∈ Tn by choosing
f = JunKν ∈ Fkn and g = −Rlnun ∈ L2. In particular, (6.23) and (6.9) directly imply that
there exists a constant CI > 0 such that

‖IJ·Kν (un)‖Xn ≤ CI‖un‖Fn,1/2,ν . (6.24)

We show the following results for the interpolation operator IJ·Kν (·).

Lemma 6.10. For all u ∈X, it holds that limn→∞ ‖IJ·Kν (pnu)‖Xn = 0.
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Proof. From the definition of dn(·, ·) and (6.24), we have that

‖IJ·Kν (pnu)‖Xn ≤ CI‖pnu‖Fn,1/2,ν . dn(u, pnu).

Thus, the claim follows with Lemma 6.4.

Lemma 6.11. Let (un)n∈N, un ∈ Xn, be such that supn∈N ‖un‖Xn < ∞. Let N′ ⊂ N and

u ∈X be chosen with Lemma 6.7 such that un
L2

⇀ u, divnν un
L2

⇀ divu and Dn
bun

L2

⇀ ∂bu. Then,

it holds that div(un − IJ·Kν (un))
L2

⇀ divu.

Proof. Since supn∈N ‖un‖Xn < ∞, div(un − IJ·Kν (un)) is a bounded sequence due to (6.9).

Thus, there exists a subsequence N′′ ⊂ N′ and q ∈ L2 such that div(un − IJ·Kν (un))
L2

⇀ q. Let
ψ ∈ C∞0 and ψn be the lowest order standard H1-interpolant on Tn. Then, we compute

〈div(un − IJ·Kν (un)), ψ〉 = 〈div(un − IJ·Kν (un)), ψ − ψn〉+ 〈div(un − IJ·Kν (un)), ψn〉
= 〈div(un − IJ·Kν (un)), ψ − ψn〉

+
∑
τ∈Tn

〈divun, ψn〉τ − 〈div IJ·Kν (un), ψn〉τ

= 〈div(un − IJ·Kν (un)), ψ − ψn〉+
∑
τ∈Tn

〈divun, ψn〉τ + 〈Rlνn un, ψn〉τ

= 〈div(un − IJ·Kν (un)), ψ − ψn〉 − 〈un,∇ψn〉
= −〈un,∇ψ〉+ 〈div(un − IJ·Kν (un)), ψ − ψn〉+ 〈un,∇(ψ − ψn)〉,

where the last lines follow from the same argumentation as in the proof of Lemma 6.7. Since
‖ψ − ψn‖H1 . hn‖ψ‖H2 and div(un − IJ·Kν (un)) is bounded, it follows that

〈q, ψ〉 = lim
n→∞

〈div(un − IJ·Kν (un)), ψ〉 = lim
n→∞

−〈un,∇ψ〉 = −〈u,∇ψ〉,

and therefore q = divu.

In the following, we will proceed to analyze the discrete problem by utilizing the weak T-
compatibility condition from Thm. 2.28. For ease of presentation, we will first consider the
case of homogeneous pressure and gravity before considering the general case.

6.3.1 Homogeneous pressure and gravity

As in Section 5.1.1, we first consider the case of homogeneous pressure and gravity, i.e.
p = const. and φ = const, which implies that q = 0. Furthermore, we also have that M = 0 in
(6.21). Recall that in this case, the bilinear form an(·, ·) reduces to

an(un,u
′
n) =〈c2

sρ divnν un,divnν u
′
n〉 − 〈ρ(ω + iDn

b + iΩ×)un, (ω + iDn
b + iΩ×)u′n〉

− iω〈γρun,u′n〉+ sβn(un,u
′
n).

In the following, we want to construct a discrete operator Tn such that the weak T-compatibility
conditions from Thm. 2.28 are satisfied. Therefore, we consider the following problem: For
given un ∈Xn, let ṽ ∈ H2

∗ be the solution to

div∇ṽ = div(un − IJ·Kν (un)) in O, (6.25a)

ν · ∇ṽ = 0 on ∂O. (6.25b)
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Due to the linearity of J·Kν , we have that Jun − IJ·Kν (un)Kν = 0 and thus un − IJ·Kν (un) ∈
H(div). Consequently, div(un − IJ·Kν (un)) ∈ L2. Therefore, the problem (6.25) is well-posed
as div∇ = ∆. We set

ṽ := PṼnun := ∇ṽ and vn := PVnun := πdn∇ṽ + IJ·Kν (un), (6.26)

where we recall that πdn : Hs → [Pk(Tn)]d ∩H(div), s > 1/2. Further, we set wn := un − vn
and define Tn : Xn →Xn through

Tnun := vn −wn. (6.27)

6.3.1.1 Analysis of Tn

First of all, we want to analyze the operator Tn defined in (6.27). In particular, we want to
show that Tn is bounded, and bijective and that Tn

P→ T .

Lemma 6.12. There exists a constant C > 0 such that ‖PVn‖L(Xn) ≤ C for all n ∈ N.

Proof. Let un ∈ Xn be given and ṽ be the solution to (6.25). Then, we have that ‖ṽ‖H2 .
‖ div(un − IJ·Kν (un))‖L2 . ‖un‖Xn . Furthermore, we have that ∇ṽ ∈H1 and therefore the
function πdn∇ṽ is well-defined and with the same arguments as in Lemma 5.22 we have that
‖πdn∇ṽ‖Xn . ‖ṽ‖H2 . ‖un‖Xn . Thus, we have that

‖PVnun‖Xn = ‖πdn∇ṽ + IJ·Kν (un)‖Xn . ‖πdn∇ṽ‖Xn + ‖un‖Fn,1/2,ν . ‖un‖Xn

for all un ∈Xn. Thus, the claim follows.

Corollary 6.13. There exists a constant C > 0 such that ‖Tn‖L(Xn) ≤ C for all n ∈ N.

Proof. By definition, we have that Tn = 2PVn−IdXn . Thus, the claim follows with the previous
lemma.

The following results show that Tn is self-inverse, which implies its bijectivity.

Lemma 6.14. It holds that P 2
Vn

= PVn .

Proof. Let un ∈Xn and v1,n be defined through (6.26) and let v2,n be defined through (6.26)
with un replaced by v1,n. It holds that

IJ·Kν (v1,n) = IJ·Kν (πdn∇ṽ + IJ·Kν (un)) = IJ·Kν (IJ·Kν (un)) = IJ·Kν (un)

since IJ·Kν (ṽn) = 0 and I2
J·Kν = IJ·Kν . Furthermore, we have that

div∇ṽ2 = div(v1,n − IJ·Kν (v1,n)) = div(πdn∇ṽ1) = πln div∇ṽ1

= πln div(un − IJ·Kν (un)) = div(un − IJ·Kν (un)).

Thus ṽ1 = ṽ2 and consequently v2,n = v1,n, which implies that P 2
n = PVn .

Corollary 6.15. It holds that T 2
n = IdXn .

Proof. Follows directly from the previous lemma and T 2
n = 4P 2

Vn
− 4PVn + IdXn .

Lemma 6.16. For each u ∈X, we have that limn→∞ ‖(PVnpn − pnPV )u‖Xn = 0.
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Proof. We estimate

‖(PVnpn − pnPV )u‖Xn

≤ dn(PV u, pnPV u) + dn(PV u, PVnpnu)

= dn(PV u, pnPV u) + dn(PV u, π
d
nPṼnpnu+ IJ·Kν (pnu))

≤ dn(PV u, pnPV u) + dn(PV u, π
d
nPṼnu) + ‖IJ·Kν (pnu)‖Xn + ‖πdnPṼn(u− pnu)‖Xn

. dn(PV u, pnPV u) + dn(PV u, π
d
nPV u) + ‖IJ·Kν (pnu)‖Xn

+ ‖PV u− PṼnu‖X + ‖u− pnu‖H(div)

. dn(PV u, pnPV u) + dn(PV u, π
d
nPV u) + ‖IJ·Kν (pnu)‖Xn + dn(u, pnu),

where we use that PV u = PṼnu by uniqueness when we interprete IJ·Kν (u) := 0. Now, the
claim follows from Lemma 6.4, Lemma 6.5 and Lemma 6.10.

Lemma 6.17. For each u ∈X, it holds that limn→∞ ‖(Tnpn − pnT )u‖Xn = 0.

Proof. Follows from the definitions of T , Tn and the previous lemma.

6.3.1.2 Discrete weak Tn-coercivity

First of all, let us recall the following definitions from Section 5.2.3.2. For u ∈H1
ν0, we define

the weighted H1-seminorm | · |H1
c2sρ

through

|u|2H1
c2sρ

:= ‖csρ1/2∇u‖2(L2)3×3 .

Additionally, we also define the following weighted jump norm on Xn:

‖un‖2Fn,1/2,ν,c2sρ :=
∑
F∈Fn

h−1
F ‖csρ

1/2JunKν‖2L2(F ).

Furthermore, due to [HH21, Thm. 3.5], see also Thm. 4.5, there exists a compact operator
KG ∈ L(V ) such that

〈c2
sρ div v,div v〉 = |v|2H1

c2sρ

+ 〈KGv,v〉V , (6.28)

where V := {∇v : v ∈ H2
∗,Neu}, ‖ · ‖V := | · |H1

c2sρ
. Finally, we recall the following result.

Lemma 6.18 (Lem. 16 from [Hal23]). For all v ∈H1
ν0 and n ∈ N, it holds that

‖ρ1/2Dn
bπ

d
nv‖2L2 ≤ (C#

π )2(1 + h2
nC̃π)‖c−1

s b‖2L∞ |v|2H1
c2sρ

,

with constants C̃π > 0 and

(C#
π )2 := 2((CabCshCdt) + sup

n∈N
sup
τ∈Tn

‖πdn‖2L2(H1
∗(τ))), ‖ · ‖H1

∗(τ) := | · |H1(τ).

We want to show a similar statement for vn defined in (6.26).

Lemma 6.19. For un ∈Xn let vn = PVnun = πdn∇ṽ+ IJ·Kν (un) be as in (6.26). Then, it holds
that

‖ρ1/2Dn
bvn‖2L2 ≤ (C̃#

π )2(1 + h2
nC̃π)‖c−1

s b‖2L∞
(
|∇ṽ|2H1

c2sρ

+ ‖un‖2Fn,1/2,ν,c2sρ
)
, (6.29)

with constants C̃π > 0 and C̃#
π := max(C#

π , (C2
I + C2

dt)
1/2), where C#

π is defined as in Lemma
6.18.

88



Chapter 6. A fully discontinuous Galerkin discretization of Galbrun’s equation

Proof. By definition of vn, we have that vn = πdn∇ṽ + IJ·Kν (un). Thus, we can estimate

‖ρ1/2Dn
bvn‖L2 ≤ ‖ρ1/2Dn

bπ
d
n∇ṽ‖L2 + ‖ρ1/2Dn

b (IJ·Kν (un))‖L2 . (6.30)

Since ∇ṽ ∈ H1
ν0, we can apply the Lemma 6.18 to the first term. For the second term, we

estimate for each τ ∈ Tn with (6.24) and the argumentation from (5.41) that

‖ρ1/2∂b(IJ·Kν (un))‖2L2(τ) ≤ ‖c
−1
s b‖2L∞csτ 2ρτ |IJ·Kν (un)|2H1(τ)

≤ ‖c−1
s b‖2L∞C2

Icsτ
2ρτ‖h−1/2JunKν‖2L2(∂τ)

≤ ‖c−1
s b‖2L∞C2

I

(
1 + h2

n

1

csτ
2ρτ

(CL
csρ1/2

)2
)2
‖h−1/2csρ

1/2JunKν‖2L2(∂τ),

where CL
csρ1/2

is the Lipschitz constant of csρ1/2. Similarly, we have that

‖ρ1/2Rlb
n (IJ·Kν (un))‖2L2(τ) ≤ C

2
dtρτ‖h

−1/2JIJ·Kν (un)Kb‖2L2(∂τ)

≤ ‖c−1
s b‖2L∞C2

dtcsτ
2ρτ‖h−1/2JunKν‖2L2(∂τ)

≤ ‖c−1
s b‖2L∞C2

dt

(
1 + h2

n

1

csτ
2ρτ

(CL
csρ1/2

)2
)2
‖h−1/2csρ

1/2JunKν‖2L2(∂τ).

Thus, summing over all elements τ ∈ Tn yields that

‖ρ1/2Dn
b (IJ·Kν (un))‖2L2 ≤ (C2

I + C2
dt)(1 + h2

nC̃π)‖c−1
s b‖2L∞‖un‖2Fn,1/2,ν,c2sρ, (6.31)

which shows the claim.

Additionally, we also want to have the following lemma.

Lemma 6.20. For un ∈Xn let vn := PVnun be defined by (6.26). Then, for δ ∈ (0, 1) it holds
that

‖csρ1/2 divnν vn‖2L2 ≥
(

1− δ
)(
|∇ṽ|2H1

c2sρ

+ 〈KGPṼnun, PṼnun〉V
)

+
(

1− 1

δ

)
(C2
I + C2

dt)
1/2(1 + h2

nC̃π)2‖un‖Fn,1/2,ν,c2sρ.
(6.32)

Proof. From the definition of vn we have that vn = πdn∇ṽ+IJ·Kν (un). First, we note that since
πdn∇ṽ ∈ H(div), we have that divnν π

d
n∇ṽ = div πdn∇ṽ. On each element τ ∈ Tn we estimate

with the weighted Young’s inequality

‖csρ1/2 divnν vn‖2L2(τ) ≥ (1− δ)‖csρ1/2 div πdn∇ṽ‖2L2(τ) + (1− 1

δ
)‖csρ1/2 divnν IJ·Kν (un)‖2L2(τ).

For the first term, we compute with div πdn = πln div that

div πdn∇ṽ = πln div∇ṽ = πln

(
div(un − IJ·Kν (un))

)
(6.33a)

= div(un − IJ·Kν (un)) = ∆ṽ, (6.33b)

since div(un − IJ·Kν (un)) ∈ Qn. Thus, we obtain with (6.28) similar to [Hal23, Eq. (28)] that

〈c2
sρ div πdn∇ṽ,div πdn∇ṽ〉 = |∇ṽ|2H1

c2sρ

+ 〈KGPṼnun, PṼnun〉V
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For the remaining term, we estimate on each element τ ∈ Tn with (6.24) and similar arguments
as in (5.21)

‖csρ1/2 div(IJ·Kν (un))‖2L2(τ) ≤ C
2
Icsτ

2ρτ‖h−1/2JunKν‖2L2(∂τ)

≤ C2
I

(
1 + h2

n

1

csτ
2ρτ

(CL
csρ1/2

)2
)2
‖h−1/2csρ

1/2JunKν‖2L2(∂τ).

Furthermore, applying (6.9) yields

‖csρ1/2Rln(IJ·Kν (un))‖2L2(τ) ≤ C
2
dtcsτ

2ρτ‖h−1/2JunKν‖2L2(∂τ)

≤ C2
dt

(
1 + h2

n

1

csτ
2ρτ

(CL
csρ1/2

)2
)2
‖h−1/2csρ

1/2JunKν‖2L2(∂τ).

Thus, summing over each element τ ∈ Tn yields

‖csρ1/2 divnν(IJ·Kν (un))‖2L2 ≤ (C2
I + C2

dt)
1/2(1 + h2

nC̃π)‖un‖Fn,1/2,ν,c2sρ,

for a constant C̃π > 0. Combining the estimates for the two terms yields the claim.

Lemma 6.21. For un ∈Xn, we have that

sβn(un,un) ≥ (αν − βC2
dtN∂)‖un‖2Fn,1/2,ν,c2sρ.

Proof. Due to (6.9) we calculate

sβn(un,un) = αν‖un‖2Fn,1/2,ν,c2sρ − β‖csρ
1/2Rlνn (un)‖2L2 ≥ (αν − βC2

dtN∂)‖un‖2Fn,1/2,ν,c2sρ.

Now, we want to show that the requirements from Thm. 2.28 are satisfied. Thus we first show
that we can write AnTn = Bn +Kn, Bn,Kn ∈ L(Xn), such that (Kn)n∈N is compact (Lemma
6.22) and Bn is stable (Lemma 6.24). Furthermore, we show that Kn

P→ K, K ∈ L(X) and
Bn

P→ B, where B ∈ L(X) is bijective (Lemma 6.25). We pose the following assumption on
the Mach number of the background flow b.

Assumption 6.1. The background flow satisfies

‖c−1
s b‖2L∞ <

1

C̃#
π

, (6.34)

where C̃#
π > 0 is the constant from Lemma 6.19.

For un,u′n ∈Xn, we now define with constants C1, C2 > 0 to be specified lateron

〈B̃nun,u′n〉Xn :=

〈c2
sρdivnν vn, divnν v

′
n〉 − 〈ρiDn

bvn, iD
n
bv
′
n〉 (6.35a)

− 〈ρiDn
bvn, (ω + iDn

b + iΩ×)w′n〉+ 〈ρ(ω + iDn
b + iΩ×)wn, iD

n
bv
′
n〉 (6.35b)

+ 〈ρ(ω + iDn
b + iΩ×)wn, (ω + iDn

b + iΩ×)w′n〉+ 〈ρiωγwn,w
′
n〉 (6.35c)

+ 〈vn,v′n〉+ C1〈KGPṼnun,KGPṼnu
′
n〉V + sβn(un,u

′
n) (6.35d)
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and

〈K̃nun,u
′
n〉Xn :=

C2(〈vn,v′n〉+ 〈KGPṼnun,KGPṼnu
′
n〉V ) (6.36a)

− 〈ρ(ω + iΩ×)vn, (ω + iΩ×)v′n〉 − 〈ρ(ω + iΩ×)vn, iD
n
bv
′
n〉 (6.36b)

− 〈ρiDn
bvn, (ω + iΩ×)v′n〉 − iω〈γρvn,v′n〉 (6.36c)

− 〈ρ(ω + iΩ×)vn, (ω + iDn
b + iΩ×)w′n〉 − iω〈γρvn,w′n〉 (6.36d)

+ 〈ρ(ω + iDn
b + iΩ×)wn, (ω + iΩ×)v′n〉+ iω〈γρwn,v

′
n〉. (6.36e)

We set Bn := B̃n + K̃n and further define

〈Knun,u
′
n〉Xn := −(1 + C2)〈vn,v′n〉 − (C1 + C2)〈KGPṼnun,KGPṼnu

′
n〉V . (6.37)

The uniform boundedness of Bn, n ∈ N, follows straightforwardly.

Lemma 6.22. It holds that AnTn = Bn +Kn and (Kn)n∈N is compact.

Proof. We note that the operators Kn and K̃n only contain terms that are compact due to
Lemma 5.27, see also the argumentation in [Hal23, Proof of Thm. 18, 1. step]. Furthermore,
(6.25) yields that

divnν wn = divnν(un − vn)

= divnν un − div πdn∇ṽ︸ ︷︷ ︸
=πln div∇ṽ

−divnν IJ·Kν (un)

= divun − div(un − IJ·Kν (un))− div IJ·Kν (un) +Rlnun −RlnIJ·Kν (un)

= Rlnun −RlnIJ·Kν (un) = 0,

where the last step is due to JunKν = JIJ·Kν (un)Kν . We note that 〈AnTnun,u′n〉Xn = an(vn −
wn,v

′
n +wn). By construction of vn, we have that JvnKν = JunKν and thus sβn(Tnun,u

′
n) =

sβn(vn,v
′
n) = sβn(un,u

′
n). Writing out the terms and reordering yields that AnTn = Bn +Kn,

where we note that the terms added by Kn cancel out with (6.36a) and (6.35d).

Lemma 6.23. Assume that Assumption 6.1 is satisfied. For αν sufficiently large, there exists an
index n0 > 0 such that the operator B̃n ∈ L(Xn) defined by (6.35) is uniformly coercive for all
n > n0.

Proof. Let un ∈Xn be arbitrary. In the following, we denote for δ ∈ (0, 1)

Cδ := −
(

1− 1

δ

)
(C2
I + C2

dt)
1/2(1 + h2

nC̃π) > 0 (6.38)

the constant from the second term of Lemma 6.20. Due to the smallness assumption on the
Mach number, we can find ε, δ ∈ (0, 1), τ ∈ (0, π/2) and n0 > 0 such that

Cτ,ε,δ,n0 := (1−δ)−(C̃#
π )2(1+ sup

n>n0

h2
nC̃π)‖c−1

s b‖2L∞(1+tan2(τ)(1−ε)−1−ε)−ε(1−δ+Cδ) > 0.

We calculate
1

cos(τ)
<
(
e−iτsgnω〈B̃nun,un〉Xn

)
= ‖csρ1/2 divnν vn‖2L2 − ‖ρ1/2Dn

bvn‖2L2 + ‖vn‖2L2

+ C1‖KGPṼnun‖
2
V + ‖ρ1/2(ω + iDn

b + iΩ×)wn‖2L2

+ 2 tan(τ)sgnω=
(
〈ρ(ω + iDn

b + iΩ×)wn, iD
n
bvn〉

)
+ |ω| tan(τ)‖(γρ)1/2wn‖2L2 + sβn(un,un).

91



6.3. Convergence Analysis

Due to the Cauchy-Schwarz and a weighted Young’s inequality, we estimate

−|2 tan(τ)sgnω=
(
〈ρ(ω + iDn

b + iΩ×)wn, iD
n
bvn〉

)
|

≥ − tan2(τ)(1− ε)−1‖ρ1/2iDn
bvn‖2L2 − (1− ε)‖ρ1/2(ω + iDn

b + iΩ×)wn‖2L2

and therefore we have that

1

cos(τ)
<
(
e−iτsgnω〈B̃nun,un〉Xn

)
≥ ‖csρ1/2 divnν vn‖2L2 − (1 + tan2(τ)(1− ε)−1)‖ρ1/2Dn

bvn‖2L2 + ‖vn‖2L2

+ C1‖KGPṼnun‖
2
V + ε‖ρ1/2(ω + iDn

b + iΩ×)wn‖2L2

+ |ω| tan(τ)‖(γρ)1/2wn‖2L2 + sβn(un,un).

Then, with Lemma 6.19 and 6.20, we estimate

‖csρ1/2 divnν vn‖2L2 − (1 + tan2(τ)(1− ε)−1)‖ρ1/2Dn
bvn‖2L2

≥ ε
(
‖csρ1/2 divnν vn‖2L2 + ‖ρ1/2Dn

bvn‖2L2

)
+ Cτ,ε,δ,n0

(
|∇ṽ|2H1

c2sρ

+ ‖un‖Fn,1/2,ν,c2sρ
)

− Cδ‖un‖Fn,1/2,ν,c2sρ + (1− ε)(1− δ)〈KGPṼnun, PṼnun〉V .

Therefore, Lemma 6.21 and a weighted Young’s inequality yield for αν ≥ βC2
trN∂ + Cδ + ε

‖csρ1/2 divnν vn‖2L2 − (1 + tan2(τ)(1− ε)−1)‖ρ1/2Dn
bvn‖2L2 + ‖vn‖2L2

+ C1‖KGPṼnun‖
2
V + sβn(un,un)

≥ ε
(
‖csρ1/2 divnν vn‖2L2 + ‖ρ1/2Dn

bvn‖2L2

)
+ Cτ,ε,δ,n0

(
|∇ṽ|2H1

c2sρ

+ ‖un‖Fn,1/2,ν,c2sρ
)

+ ‖vn‖2L2 +
(
αν − βC2

trN∂ − Cδ
)
‖un‖Fn,1/2,ν,c2sρ +

(
C1 −

1

4δ̃

)
‖KGPṼnun‖

2
V

− δ̃ sup
m∈N
‖PṼm‖

2
L(Xm,V )‖un‖

2
Xn

≥ εmin{cs2ρ, ρ, 1}‖vn‖2Xn
+
(
C1 −

1

4δ̃

)
‖KGPṼnun‖

2
V − δ̃ sup

m∈N
‖PṼm‖

2
L(Xm,V )‖un‖

2
Xn
,

where we use that ‖un‖Fn,1/2,ν,c2sρ = ‖vn‖Fn,1/2,ν,c2sρ since JunKν = JvnKν . Finally, we note
that since divnν wn = 0, we have as in [HH21] due to a weighted Young’s inequality that

ε‖ρ1/2(ω+ iDn
b + iΩ×)wn‖2L2 + |ω| tan(τ)‖(γρ)1/2wn‖2L2 & ‖Dn

bwn‖2L2 + ‖wn‖2L2 & ‖wn‖Xn .

Thus, we obtain with CB̃ > 0 independent of δ, δ̃, C1 and n > n0 that

1

cos(τ)
<
(
e−iτsgnω〈B̃nun,un〉Xn

)
≥ CB̃‖un‖

2
Xn

+
(
C1 −

1

4δ̃

)
‖KGPṼnun‖

2
V − δ̃ sup

m∈N
‖PṼm‖

2
L(Xm,V )‖un‖

2
Xn
.

Thus, we can choose δ̃ small enough and n1 > n0 big enough such that

δ̃ sup
m∈N
‖PṼm‖

2
L(Xm,V ) ≤ CB̃/2.

Then, we obtain for n > n1 that

1

cos(τ)
<
(
e−iτsgnω〈B̃nun,un〉Xn

)
≥
CB̃
2
‖un‖2Xn

+
(
C1 −

1

4δ̃

)
‖KGPṼnun‖

2
V .
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Finally, choosing C1 > 1/(4δ̃) gives for n > n1

1

cos(τ)
<
(
e−iτsgnω〈B̃nun,un〉Xn

)
≥
CB̃
2
‖un‖2Xn

,

which proves that B̃n is indeed coercive for n > n1 and αν sufficiently large.

Lemma 6.24. Assume that αν > 0 is sufficiently large. Under Assumption 6.1, there exist an
index n0 > 0 such that the operator Bn := B̃n + K̃n is uniformly coercive for all n > n0.

Proof. Let un ∈ Xn be arbitrary. With the weighted Young’s inequality, we estimate with a
constant Cτ,ε > 0 depending on ε > 0 and τ ∈ (0, π/2) that

1

cos(τ)
<
(
e−iτsgnω〈K̃nun,un〉Xn

)
≥ C2(‖vn‖2L2 + ‖KGPṼnun‖

2
V )− Cτ,ε‖un‖2Xn

.

Thus, we with Lemma 6.23 that there exists CB̃ > 0 and n0 > 0 such that for αν sufficiently
large

1

cos(τ)
<
(
e−iτsgnω〈Bnun,un〉Xn

)
≥ (

CB̃
2
− Cτ,ε)‖un‖2Xn

+ C2(‖vn‖2L2‖KGPṼnun‖
2
V )

≥ (
CB̃
2
− Cτ,ε)‖un‖2Xn

.

Choosing ε > 0 such that Cτ,ε < CB̃/2 yields the claim.

Lemma 6.25. There exist operators B,K ∈ L(X) such that AT = B +K such that Bn
P→ B

and Kn
P→ K, where B is coercive.

Proof. For u,u′ ∈X, we define

〈Bu,u′〉X :=

〈c2
sρdiv v, div v′〉 − 〈ρi∂bv, i∂bv′〉 − 〈ρi∂bv, (ω + i∂b + iΩ×)w′〉 (6.39a)

+ 〈ρ(ω + i∂b + iΩ×)w, i∂bv
′〉+ 〈ρ(ω + i∂b + iΩ×)w, (ω + i∂b + iΩ×)w′〉 (6.39b)

+ (1 + C2)〈v,v′〉+ (C1 + C2)〈KGv,KGv
′〉 (6.39c)

− 〈ρ(ω + iΩ×)v, (ω + iΩ×)v′〉 − 〈ρ(ω + iΩ×)v, i∂bv
′〉 (6.39d)

− 〈ρi∂bv, (ω + iΩ×)v′〉 − iω〈γρv,v′〉 (6.39e)

− iω〈γρv,w′〉 − 〈ρ(ω + iΩ×)w, (ω + iΩ×)v′〉 (6.39f)

+ iω〈γρw,v′〉+ 〈ρ(ω + i∂b + iΩ×)w, (ω + iΩ×)v′〉 (6.39g)

and
〈Ku,u′〉X := −(1 + C1)〈v,v′〉 − (C1 + C2)〈KGv,KGv

′〉. (6.40)

Then it holds that AT = B+K with the same argumentation as in Lemma 6.22. Furthermore,
with the same argumentation as in Lemma 6.24, we obtain that B is coercive. It remains to
show that Bn

P→ B and Kn
P→ K. First, we recall Bn = AnTn −Kn and B = AT −K and

estimate

‖(pnB−Bnpn)u‖Xn

≤ ‖(pnK −Knpn)u‖Xn + ‖(pnAT −AnTnpn)u‖Xn

≤ ‖(pnK −Knpn)u‖Xn + ‖(pnA−Anpn)Tu‖Xn + ‖An‖L(Xn)‖(pnT − Tnpn)u‖Xn .
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Due to the uniform boundedness of (An)n∈N, Thm. 6.8 and Lemma 6.17, it suffices to
show that limn→∞ ‖(pnK − Knpn)u‖Xn = 0. Let u′n ∈ Xn, ‖u′n‖Xn , n ∈ N, be such that
‖(pnK − Knpn)un‖Xn ≤ |〈pnKu − Knpnu,u

′
n〉Xn | + 1/n and let N′ ⊂ N be an arbitrary

subsequence. Then, we can apply Lemma 6.7 to obtain a subsequence N′′ ⊂ N′ such that

u′n
L2

⇀ u′, divnν u
′
n
L2

⇀ divu’ and Dn
bu
′
n
L2

⇀ ∂bu
′. On the one hand, we compute

〈pnKu,u′n〉Xn = 〈divKu, divnν u
′
n〉+ 〈Ku,u′n〉+ 〈∂bKu,Dn

bu
′
n〉

n∈N′′→ 〈divKu,divnν u
′〉+ 〈Ku,u′〉+ 〈∂bKu,Dn

bu
′〉 = 〈Ku,u′〉X .

On the other hand, we have that

|〈v,v′n〉 − 〈PVnpnu,v′n〉| = |〈PV u− (πdnPṼnpnu+ IJ·Kν (pnu)),v′n〉|
. |〈PV u− πdnPṼnu,v

′
n〉|+ dn(u, pnu) + ‖IJ·Kν (pnu)‖Xn

. |〈PV u− πdnPV u,v′n〉|+ dn(u, pnu) + ‖IJ·Kν (pnu)‖Xn

. hn‖PV u‖H1 + dn(u, pnu) + ‖IJ·Kν (pnu)‖Xn

(6.41)

and
|〈KGv,KGPṼnu

′
n〉V − 〈KGPṼnpnu,KGPṼnu

′
n〉V |

= |〈KG(PV u− PṼ pnu),KGPṼnu
′
n〉V |

. |〈KG(PV u− PṼ u),KGPṼnu
′
n〉V |+ dn(u, pnu)

. dn(u, pnu),

(6.42)

where the last step follows from PV u = PṼnu. Furthermore, we have that

〈KGv,KGPṼnu
′
n〉V = 〈K∗GKGv, PṼnu

′
n〉V = 〈K∗GKGv, PV (u′n − IJ·Kν (u′n))〉V

= 〈P ∗VK∗GKGv,u
′
n − IJ·Kν (u′n)〉H0(div)

n∈N′′→ 〈P ∗VK∗GKGv,u
′〉H0(div) = 〈KGv,KGv

′〉V ,

where the last step follows since div(u′n − IJ·Kν (un)′)
L2

⇀ divu′ by Lemma 6.11. Thus, we
conclude that

lim
n→∞

〈Knpnu,u
′
n〉Xn = (1 + C2)〈v,v′〉+ (C1 + C2)〈KGv,KGv

′〉V = 〈Ku,u′〉X .

Since N′ ⊂ N was chosen arbitrary, we conclude that limn→∞ ‖(pnK −Knpn)u‖Xn = 0 for all
u ∈X which proves the claim.

Now, we can apply Thm. 2.28 to obtain the following result.

Theorem 6.26. Assume that Assumption 6.1 is satisfied and αν is sufficiently large. Let f ∈ L2

and u ∈ X be the solution to a(u,u′) = 〈f ,u′〉 for all u′ ∈ X. Then there exists an index
n0 > 0 such that for all n > n0 the solution un ∈Xn to (6.11) exists and limn→∞ dn(u,un) = 0.
Additionally, if u ∈X ∩H2+s, s > 0, ρ ∈W 1+s,∞, and b ∈W 1+s,∞, then

dn(u,un) . hmin(1+s,k)
n + hmin(s,lb)

n + hmin(s,lν)
n .

Proof. Due to the previous results and Thm. 6.8, we can apply Thm. 2.28 to conclude that
(An)n∈N is regular. Furthermore, Lemma 4.4 yields the injectivity of A and with the same
argumentation as in the proof of Thm. 5.33, we can show that the right-hand side of the
discrete problem P-converges towards the right-hand side of the continuous problem. Thus,
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we can apply Thm. 2.17 to conclude the existence of discrete solutions un ∈Xn to (6.11) for
all n > n0. That limn→∞ dn(u,un) = 0 follows from the same argumentation as in [Hal23,
Thm. 19], see also Thm. 5.33. To show the desired convergence rates, we estimate as in the
proof of Thm. 5.33 that

dn(u,un) ≤ dn(u, pnu) + ‖pnu− un‖Xn . dn(u, pnu) + ‖An(pnu− un)‖Xn .

For the first term of the right-hand side, we apply Lemma 6.3 to obtain the convergence rate
dn(u, pnu) . h

min(1+s,k)
n . For the second term, we compute

‖An(pnu− un)‖Xn = sup
‖u′n‖Xn=1

|an(pnu− un,u′n)|

= O(dn(u, pnu), n→∞) + sup
‖u′n‖Xn=1

|〈c2
sρdivu, divnν u

′
n〉

− 〈ρ(ω + i∂b + iΩ×)u, (ω + iDn
b + iΩ×)u′n〉 − iω〈γρu,u′n〉 − 〈f ,u′n〉|,

where we proceed as in the proof of Thm. 6.8 to obtain the terms of order O(dn(u, pnu), n→
∞). Recall that for lb, lν ∈ N≥1, we set

Qn := {ψn ∈ L2 : ψn|τ ∈ P lb(τ) ∀τ ∈ Tn}, Qn := {ψn ∈ L2 : ψn|τ ∈ P lν (τ) ∀τ ∈ Tn}.

We note that the calculations from the proof of Thm. 5.33 for the integration by parts of Dn
b

remain valid. Let ψn ∈ Qn be the H1-projection of ρ(ω + i∂b + iΩ×)u as discussed there.
Furthermore, let ψn ∈ Qn be a H1-projection of c2

sρdivu. Then, we compute

〈c2
sρdivu, divnν u

′
n〉 = 〈ψn,divnν u

′
n〉+ 〈c2

sρdivu− ψn,divnν un〉

and

〈ψn,divnν u
′
n〉 = 〈ψn, divu′n +Rlnu

′
n〉Tn = 〈ψn,divu′n〉Tn − 〈{{ψn}}, Ju′nKν〉Fn

=
∑
τ∈Tn

〈ψn, divu′n〉τ − 〈ψn,ν · u′n〉L2(∂τ)

= −〈∇ψn,u′n〉 = −〈∇(c2
sρdivu),u′n〉+ 〈∇(c2

sρdivu− ψn),u′n〉.

(6.43)

Thus, we conclude that due to the properties of ψn and ψn that

sup
‖u′n‖Xn=1

|〈c2
sρdivu,divnν u

′
n〉 − 〈ρ(ω + i∂b + iΩ×)u, (ω + iDn

b + iΩ×)u′n〉

− iω〈γρu,u′n〉 − 〈f ,u′n〉|
. ‖ρ(ω + i∂b + iΩ×)u−ψn‖H1 + ‖c2

sρ divu− ψn‖H1

. hmin(s,lb)
n + hmin(s,lν)

n

Applying Lemma 6.3 again, we conclude that

dn(u, pnu) . hmin(1+s,k)
n + hmin(s,lb)

n + hmin(s,lν)
n .
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6.3.2 Heterogeneous pressure and gravity

Now, we want to consider the general case of heterogeneous pressure and gravity. We recall
that with q := c−2

s ρ−1∇p, we can express the sesquilinear form an(·, ·) as

an(un,u
′
n) :=〈c2

sρ(divnν +q·)un, (divnν +q·)u′n〉
− 〈ρ(ω + iDn

b + iΩ×)un, (ω + iDn
b + iΩ×)u′n〉

− iω〈γρun,u′n〉+ 〈(Hess(p)−Hess(φ)− c2
sρq ⊗ q)un,u

′
n〉+ sβn(un,u

′
n).

Let IJ·Kν : Xn →Xn be as defined in the previous section. We consider the following problem:
For given un ∈Xn, let ṽ ∈ H2

∗ be the solution to

(div +PL2
0
q ·+M)∇ṽ = (div +πlnq ·+M)(un − IJ·Kν (un)) in O, (6.44a)

ν · ∇ṽ = 0 on ∂O. (6.44b)

This problem is well-posed due to the arguments from Section 5.2.3.2. We define

ṽ := PṼnun := ∇ṽ and vn := PVnun := πdn∇ṽ + IJ·Kν (un), (6.45)

where we recall that πdn : Hs → [Pk(Tn)]d ∩ H(div), s > 1/2, and set wn := un − vn. We
further note that this construction implies that

divnν wn = divnν(un − vn) = divun +Rlnun − div vn −Rlnvn
= divun +Rlnun − div πdn∇ṽ − div IJ·Kν (un)−RlnIJ·Kν (un) = divwn,

(6.46)

since RlnIJ·Kν (un) = Rlnun by definition of IJ·Kν . Now, we define an operator Tn : Xn →Xn

through
Tnun := vn −wn. (6.47)

In the following, we will first analyze the operator Tn and then prove that the weak T-
compatibility conditions from Thm. 2.28 are fulfilled.

6.3.2.1 Analysis of Tn

Lemma 6.27. There exists a constant C > 0 such that ‖PVn‖L(Xn) ≤ C for all n ∈ N.

Proof. For un ∈Xn let ṽ be the solution to (6.44). Then, we have that

‖ṽ‖H2 . ‖(div +πlnq ·+M)(un − IJ·Kν (un))‖L2 . ‖un‖Xn .

With the same argumentation as in Lemma 6.12, the claim follows.

Corollary 6.28. There exists a constant C > 0 such that ‖Tn‖L(Xn) ≤ C for all n ∈ N.

Proof. This follows from the definition of Tn and the previous result.

Now, we show that the sequence (Tn)n∈N is stable. To this end, we proceed as in [Hal23] and
show that the projection PVn is asymptotically idempotent as a preliminary result.

Lemma 6.29. Let On := PVnPVn − PVn . Then limn→∞ ‖On‖L(Xn) = 0.
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Proof. Let un ∈ Xn and v1,n := πdn∇ṽ1 + IJ·Kν (un) be defined by (6.45). Further, let v2,n :=

πdn∇ṽ2 + IJ·Kν (v1,n) be defined by (6.45) with un being replaced by v1,n in (6.44). Then, with
the same argumentation as in the proof of Lemma 6.14, we have that IJ·Kν (v1,n) = IJ·Kν (un).
Furthermore, since IJ·Kν (πdn∇ṽ1) = 0 we compute

(div +PL2
0
q ·+M)∇ṽ2 = (div +πlnq ·+M)πdn∇ṽ1

= πln(div +PL2
0
q ·+M)∇ṽ1 +Mπdn∇ṽ1 − πlnM∇ṽ1

+ πlnq · (πdn − IdX)∇ṽ1

= πln(div +πlnq ·+M)(un − IJ·Kν (un))

+M(πdn − IdX)∇ṽ1 + (IdL2
0
−πln)M∇ṽ1

+ πlnq · (πdn − IdX)∇ṽ1

= (div +πlnq ·+M)(un − IJ·Kν (un)) + Õnun,

(6.48)

where Õnun := M(πdn − IdX)∇ṽ1 + (IdL2
0
−πln)M∇ṽ1 + (πln − IdL2

0
)M(un − IJ·Kν (un)) +

πlnq · (πdn − IdX)∇ṽ1. With the same arguments as in [Hal23, Lem. 12], see also Lemma
5.23, we obtain that limn→∞ ‖Õn‖L(Xn,L2

0) = 0. This proves the claim since we have that

(div +PL2
0
q ·+M)∇(ṽ2 − ṽ1) = Õnun and

‖(PVnPVn − PVn)un‖Xn . ‖∇(ṽ2 − ṽ1)‖H1 . ‖Õn‖L(Xn,L2
0)‖un‖Xn .

Note that from (6.48) we have that

(div +πlnq·)wn = −Mwn − Õnun. (6.49)

Lemma 6.30. There exist constants n0, C > 0 such that Tn is invertible and ‖T−1
n ‖L(Xn) ≤ C

for all n > n0.

Proof. This follows with the same argumentation as in the proof of Lemma 5.24 from Lemma
6.28 and Lemma 6.29.

Lemma 6.31. For each u ∈X, it holds that limn→∞ ‖(PVnpn − pnPV )u‖Xn = 0.

Proof. The statement follows from the same argumentation as in the proof of Lemma 6.16
with the difference that

‖PV u− PṼnu‖X . ‖(PL2
0
− πln)(q · u)‖L2 ,

which converges to zero since πln converges pointwise to PL2
0
, cf. also [Hal23, Lem. 14].

Lemma 6.32. For each u ∈X, it holds that limn→∞ ‖(Tnpn − pnT )u‖Xn = 0.

Proof. Follows directly from the definitions of T , Tn and the previous lemma.
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6.3.2.2 Discrete weak Tn-coercivity

First of all, we note that the proof of Lemma 6.19 carries over to the heterogeneous case
because it does not depend explicitly on the construction of ∇ṽ in (6.25). In contrast, the
proof of Lemma 6.20 has to be adjusted because we make use of the explicit construction of
∇ṽ. Note that Lemma 6.21 also remains unaffected.

Lemma 6.33. For un ∈ Xn let vn = PVnun = πdn∇ṽ + IJ·Kν (un) be defined by (6.45). Then,
for δ ∈ (0, 1) it holds that

‖csρ1/2 divnν vn‖2L2 ≥
(

1− δ
)(
|∇ṽ|2H1

c2sρ

+ 〈KGPṼnun, PṼnun〉V + 〈Ǒnun,un〉Xn

)
+
(

1− 1

δ

)
(C2
I + C2

dt)
1/2(1 + h2

nC̃π)‖un‖Fn,1/2,ν,c2sρ.
(6.50)

Proof. We only have to modify the proof of Lemma 6.20 by reconsidering (6.33). We compute

div πdn∇ṽ = πln div∇ṽ = πln(−(PL2
0
q ·+M)∇ṽ + (div +πlnq ·+M)(un − IJ·Kν (un)))

= −(PL2
0
q ·+M)∇ṽ + (div +πlnq ·+M)(un − IJ·Kν (un))

+ (Id−πln)(PL2
0
q ·+M)∇ṽ + (πln − Id)M(un − IJ·Kν (un))

= div∇ṽ + (Id−πln)(PL2
0
q ·+M)PṼnun + (πln − Id)M(un − IJ·Kν (un))

=: ∆ṽ + Ônun.

With the same techniques as in the proof of Lemma 5.23, we can show that limn→∞ ‖Ôn‖L(Xn,L2
0) =

0. Thus, we have with

〈Ǒnun,u′n〉Xn := 〈c2
sρ div πdn∇ṽ, Ônun〉+ 〈c2

sρÔnun, div(πdn∇ṽ)′〉+ 〈c2
sρÔnun, Ônu

′
n〉

that it holds limn→∞ ‖Ǒn‖L(Xn) = 0 and

〈c2
sρdiv πdn∇ṽ,div πdn∇ṽ〉 = 〈c2

s∆ṽ,∆ṽ〉+ 〈Ǒnun,un〉Xn . (6.51)

Thus, with (6.28) we obtain that

〈c2
sρdiv πdnṽ,div πdnṽ〉 = |∇ṽ|2H1

c2sρ

+ 〈KGPṼnun, PṼnun〉V + 〈Ǒnun,un〉Xn . (6.52)

This proves the claim since all other steps from the proof of Lemma 6.20 carry over.

As in the previous section, we now want to show that we can apply Thm. 2.28. First, let us
recall the following definitions from Section 5.2.3.2. For a symmetric matrix m, we denote by
λ−(m) ∈ L∞ its smallest eigenvalue. In the following, we set m := −ρ−1 Hess(p) + Hess(φ)
and define

Cm := max
{

0, sup
x∈O

−λ−(m(x))

γ(x)

}
and θ := arctan(Cm/|ω|) ∈ [0, 2π), ω 6= 0. (6.53)

Now, we first show that we can write AnTn = Bn +Kn, Bn,Kn ∈ L(Xn), such that (Kn)n∈N
is compact (Lemma 6.34) and Bn is stable (Lemma 6.36). Then, we show that Kn

P→ K,
K ∈ L(X) and Bn

P→ B, where B ∈ L(X) is bijective (Lemma 6.37). In preparation, we pose
the following assumption on the Mach number of the background flow.
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Assumption 6.2. The background flow b satisfies

‖c−1
s b‖2L∞ <

1

(C̃#
π )2

1

1 + C2
m/|ω|2

, (6.54)

where C̃#
π > 0 is the constant from Lemma 6.19.

For un,u′n ∈Xn we now define with constants C1, C2 > 0 to be specified lateron

〈B̃nun,u′n〉Xn :=

〈c2
sρ divnν vn, divnν v

′
n〉 − 〈ρiDn

bvn, iD
n
bv
′
n〉+ 〈c2

sρπ
l
n(q ·wn), πln(q ·w′n)〉 (6.55a)

− 〈ρiDn
bvn, (ω + iDn

b + iΩ×)w′n〉+ 〈ρ(ω + iDn
b + iΩ×)wn, iD

n
bv
′
n〉 (6.55b)

+ 〈ρ(ω + iDn
b + iΩ×)wn, (ω + iDn

b + iΩ×)w′n〉+ 〈ρ(iωγ +m)wn,w
′
n〉 (6.55c)

+ 〈vn,v′n〉+ C1〈KGPṼnun,KGPṼnu
′
n〉V + 〈Mwn,Mw

′
n〉+ 〈Õnun, Õnu′n〉 (6.55d)

+ sβn(un,u
′
n) (6.55e)

and

〈K̃nun,u
′
n〉Xn :=

C2

(
〈vn,v′n〉+ 〈KGPṼnun,KGPṼnu

′
n〉V + 〈Õnun, Õnu′n〉 (6.56a)

+ 〈Mwn,Mw
′
n〉+ 〈mean(q ·wn),mean(q ·w′n)〉

)
(6.56b)

+ 〈c2
sρq · vn, divnν v

′
n〉+ 〈c2

sρdivnν vn, q · v′n〉 − 〈ρ(ω + iΩ×)vn, (ω + iΩ×)v′n〉 (6.56c)

− 〈ρ(ω + iΩ×)vn, iD
n
bv
′
n〉 − 〈ρiDn

bvn, (ω + iΩ×)v′n〉 − iω〈γρvn,v′n〉 (6.56d)

− 〈ρmvn,v′n〉 (6.56e)

− 〈ρmvn,w′n〉 − iω〈γρvn,w′n〉 − 〈c2
sρπ

l
n(q · vn), πln(q ·w′n)〉 (6.56f)

− 〈ρ(ω + iΩ×)vn, (ω + iDn
b + iΩ×)w′n〉 (6.56g)

− 〈c2
sρ(divnν +πlnq·)vn,Mw′n + Õnu

′
n〉+ 〈c2

sρ(Id−πln)(q · vn), divw′n〉 (6.56h)

+ 〈ρmwn,v
′
n〉+ iω〈γρwn,v

′
n〉+ 〈c2

sρπ
l
n(q ·wn), πln(q · v′n)〉 (6.56i)

+ 〈ρ(ω + iDn
b + iΩ×)wn, (ω + iΩ×)v′n〉 (6.56j)

+ 〈c2
sρ(Mwn + Õnun), (divnν +πlnq·)v′n〉 − 〈c2

sρ divwn, (Id−πln)(q · v′n)〉 (6.56k)

− 〈c2
sρ(Id−mean− πln)(q ·wn),divw′n〉 − 〈c2

sρmean(q ·wn),divw′n〉 (6.56l)

− 〈c2
sρdivwn, (Id−mean− πln)(q ·w′n)〉 − 〈c2

sρdivwn,mean(q ·w′n)〉 (6.56m)

− 〈c2
sρ(Mwn + Õnun),Mw′n + Õnu

′
n〉. (6.56n)

Then, we set Bn := B̃n + K̃n and define

〈Knun,u
′
n〉Xn :=− (1 + C2)〈vn,v′n〉 − (C1 + C2)〈KGPṼnun,KGPṼnu

′
n〉V (6.57a)

− (1 + C2)〈Mwn,Mw
′
n〉 − C2〈mean(q ·wn),mean(q ·w′n)〉 (6.57b)

− (1 + C2)〈Õnun, Õnu′n〉 (6.57c)

We note that the uniform boundedness of Bn, n ∈ N, follows from straightforward computa-
tions.
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Lemma 6.34. It holds that AnTn = Bn +Kn and (Kn)n∈N is compact.

Proof. We note that the operators Kn and K̃n give us compact sequences, see also Lemma 5.27
and the argumentation in Lemma 5.28. To see that indeed AnTn = Bn+Kn, we first recall that
divnν wn = divwn by construction, see (6.46). Furthermore, since we have that JvnKν = JunKν ,
it holds that sβn(Tnun,u

′
n) = sβn(vn,v

′
n) = sβn(un,u

′
n). Due to (6.49), the same argumen-

tation as in Lemma 5.28 applies, where the term −〈c2
sρ divwn,divw′n〉 is reformulated

into (6.56l)-(6.56n). Similarly, the reformulation of the terms −〈c2
s divnν vn, (div +q·)w′n〉 −

〈c2
sρ(div +q·)wn, divnν v

′
n〉 into (6.56f)-(6.56h) and (6.56i)-(6.56k) follows with the same

argumentation as in Lemma 5.28.

Lemma 6.35. Let Assumption 6.2 be satisfied. Then, for αν sufficiently large, there exists an
index n0 > 0 such that the operator B̃n ∈ L(Xn) defined by (6.55) is uniformly coercive for all
n > n0.

Proof. We built upon the argumentation in the proof of Lemma 6.23 and estimate the addi-
tional terms in (6.55) as done in the proof of Lemma 5.29. Due to the smallness assumption
on the Mach number, cf. Assumption 6.2, we can find ε, δ ∈ (0, 1), τ ∈ (0, π/2− θ) and n0 > 0
such that

Cθ,τ,ε,δ,n0 :=(1− δ)− (C̃#
π )2(1 + sup

n>n0

h2
nC̃π)‖c−1

s b‖2L∞(1 + tan2(θ + τ)(1− ε)−1 − ε)

− ε(1− δ + Cδ) > 0,

where Cδ > 0 is the constant from Lemma 6.33, see (6.38). We estimate with the definition of
θ and a weighted Young’s inequality

1

cos(θ + τ)
<
(
e−i(θ+τ)sgnω〈B̃nun,un〉Xn

)
= ‖csρ1/2 divnν vn‖2L2 − ‖ρ1/2Dn

bvn‖2L2 + ‖vn‖2L2 + C1‖KGPṼnun‖
2
V + ‖Mwn‖2L2

+ ‖Õun‖2L2 + ‖csρ1/2πln(q ·wn)‖2L2 + ‖ρ1/2(ω + iDn
b + iΩ×)wn‖2L2 + 〈ρmwn,wn〉L2

+ 2 tan(θ + τ)sgnω=
(
〈ρ(ω + iDn

b + iΩ×)wn, iD
n
bvn〉

)
+ |ω| tan(θ + τ)‖(γρ)1/2wn‖2L2 + sβn(un,un)

≥ ‖c2
sρ divnν vn‖2L2 − (1 + tan2(θ + τ)(1− ε)−1)‖ρ1/2Dn

bvn‖2 + ‖vn‖2L2

+ C1‖KGPṼnun‖
2
V + ‖Mwn‖2L2 + ‖Õun‖2L2 + ‖csρ1/2πln(q ·wn)‖2L2

+ ε‖ρ1/2(ω + iDn
b + iΩ×)wn‖2L2 + |ω|(tan(θ + τ)− tan(θ))‖(γρ)1/2wn‖2L2 + sβn(un,un).

With the same arguments as in the proof of Lemma 6.23 and the use of the adapted estimate
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from Lemma 6.33, we obtain for αν ≥ βC2
trN∂ + Cδ + ε

‖c2
sρdivnν vn‖2L2 − (1 + tan2(θ + τ)(1− ε)−1)‖ρ1/2Dn

bvn‖2 + ‖vn‖2L2

+ C1‖KGPṼnun‖
2
V + sβn(un,un)

≥ ε
(
‖csρ1/2 divnν vn‖2L2 + ‖ρ1/2Dn

bvn‖2L2

)
+ Cτ,ε,δ,n0

(
|∇ṽ|2H1

c2sρ

+ ‖un‖Fn,1/2,ν,c2sρ
)

+ ‖vn‖2L2 +
(
αν − βC2

trN∂ − Cδ
)
‖un‖Fn,1/2,ν,c2sρ +

(
C1 −

1

4δ̃

)
‖KGPṼnun‖

2
V

− (δ̃ sup
m∈N
‖PṼm‖

2
L(Xm,V ) + ‖Ǒn‖L(Xn))‖un‖2Xn

≥ εmin{cs2ρ, ρ, 1}‖vn‖2Xn
+
(
C1 −

1

4δ̃

)
‖KGPṼnun‖

2
V

− (δ̃ sup
m∈N
‖PṼm‖

2
L(Xm,V ) + ‖Ǒn‖L(Xn))‖un‖2Xn

,

Furthermore, since (div +πlnq·)wn = −Mwn − Õun, see (6.49), we have that

4(‖Mwn‖2L2 + ‖Õun‖2L2 + ‖csρ1/2πln(q ·wn)‖2L2) ≥ ‖divwn‖2L2

and since divwn = divnν wn this yields

‖Mwn‖2L2 + ‖Õun‖2L2 + ‖csρ1/2πln(q ·wn)‖2L2 + ε‖ρ1/2(ω + iDn
b + iΩ×)wn‖2L2

+ |ω|(tan(θ + τ)− tan(θ))‖(γρ)1/2wn‖2L2 & ‖wn‖2Xn
.

Combining both estimates, we obtain with a constant CB̃ > 0 independent of δ, δ̃ and n > n0

that

1

cos(θ + τ)
<
(
e−i(θ+τ)sgnω〈B̃nun,un〉Xn

)
≥ CB̃‖un‖

2
Xn

+
(
C1 −

1

4δ̃

)
‖KGPṼnun‖

2
V − (δ̃ sup

m∈N
‖PṼm‖

2
L(Xm,V ) + ‖Ǒn‖L(Xn))‖un‖2Xn

.

Thus, with the same argumentation as in the proof of Lemma 6.23, we can choose δ̃, n1 > n0

and C1 > 1/(4δ̃) such that for all n > n1 it holds that

1

cos(θ + τ)
<
(
e−i(θ+τ)sgnω〈B̃nun,un〉Xn

)
≥
CB̃
2
‖un‖2Xn

,

which proves the claim.

Lemma 6.36. Assume that Assumption 6.2 holds true and that αν is sufficiently large. Then,
there exists an index n0 > 0 such that the operator Bn := B̃n + K̃n is uniformly coercive for all
n > n0.

Proof. The previous Lemma established the coercivity of B̃ for n > n0 and αν sufficiently
large. To show that K̃n is coercive, we notice that K̃n as defined in (6.56) only differs from
K̃n as defined in (5.45) by the terms corresponding with the discrete divergence divnν . In
particular, we have that divnν wn = divwn. Due to the boundedness of the lifting operator
Rlνn , the inclusion of ‖ · ‖Fn,1/2,ν in the ‖ · ‖Xn-norm and ‖vn‖Fn,1/2,ν = ‖un‖Fn,1/2,ν , we can
argue analogously to the proof of Lemma 5.30. That means that we can estimate

|〈c2
sρ(Id−mean− πln)(q ·wn), divw′n〉 ≤ ‖q‖L∞‖wn‖L2‖(Id−mean− πln)(c2

sρdivw′n)‖L2

≤ ‖q‖L∞‖wn‖L2(CLc2sρ)hn‖divwn‖L2
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and define the seminorm

|un|2Yn := ‖vn‖2Xn
+ ‖KGPṼnun‖

2
V + ‖Õnun‖2L2 + ‖Mwn‖2L2 + ‖mean(q ·wn)‖2L2 .

Then, we can estimate for constants CY,1, CY,2 > 0 with the weighted Young’s inequality that

1

cos(θ + τ)
<
(
e−i(θ+τ)sgnω〈K̃nun,un〉Xn

)
≥ C2|un|2Yn − hnCY,1‖un‖

2
Xn
− CY,2‖un‖Xn |un|Yn .

Thus, with Lemma 6.35 and an application of the weighted Young’s inequality, we obtain

1

cos(θ + τ)
<
(
e−i(θ+τ)sgnω〈Bnun,un〉Xn

)
≥
CB̃
2
‖un‖2Xn

+ C2|un|2Yn − hnCY,1‖un‖
2
Xn
− CY,2‖un‖Xn |un|Yn

≥
(CB̃

4
− hnCY,1

)
‖un‖2Xn

+
(
C2 −

C2
Y,2

CB̃

)
|un|2Yn .

Choosing C2 > C2
Y,2/CB̃ and n large enough such that hnCY,1 < CB̃/4 yields the claim.

Lemma 6.37. Let A ∈ L(X) be the operator induced by the continuous sesquilinear form a(·, ·).
Then, there exist operators B,K ∈ L(X) such that B is coercive and AT = B+K. Furthermore,
we have that Bn

P→ B and Kn
P→ K.

Proof. Let B,K ∈ L(X) be the operators defined by in the proof of Lemma 5.31, that
is (5.50) and (5.51) respectively. We recall that B is coercive and that AT = B + K.
Furthermore, with the same argument as in Lemma 5.31 or Lemma 6.25, it suffices to
show that Kn

P→ K to conclude that Bn
P→ B. Let u′n ∈ Xn, ‖u′n‖Xn = 1 be such that

‖(pnK − Knpn)un‖Xn ≤ |〈pnKu − Knpnu,u
′
n〉Xn | + 1/n and let N′ ⊂ N be an arbitrary

subsequence. Due to Lemma 6.7, we can choose a subsequence N′′ ⊂ N′ and u′ ∈ X such

that u′n
L2

⇀ u′, divnν u
′
n
L2

⇀ divu′ and Dn
bu
′
n
L2

⇀ ∂bu
′. We note that we only have to adjust the

estimates in (6.41) and (6.42) by taking into consideration that

‖PV u− PṼnu‖
2
L2 . ‖(PL2

0
− πln)(q · u)‖2L2 .

Thus, we have that

|〈v,v′n〉 − 〈PVnpnu,v′n〉| .hn‖PV u‖H1 + dn(u, pnu)

+ ‖(PL2
0
− πln)(q · u)‖2L2 + ‖IJ·Kν (pnu)‖Xn

and

|〈KGv,KGPṼnu
′
n〉V − 〈KGPṼnpnu,KGPṼnu

′
n〉V | . ‖(PL2

0
− πln)(q · u)‖2L2 + dn(u, pnu).

With the same argumentation as in the proof of Lemma 5.31, it follows that

|〈Mw,Mw′n〉 − 〈Mwn(pnu),Mw′n〉| .‖pnPV u− PVnpnu‖H(div)

+ dn(u, pnu) + dn(PV u, pnPV u),

and

|〈mean(q ·w),mean(q ·w′n)〉 − 〈mean(q ·wn(pnu)),mean(q ·w′n)〉|
. ‖pnPV u− PVnpnu‖H(div) + dn(u, pnu) + dn(PV u, pnPV u).
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Finally, we denote by S := ∇((div +PL2
0
q ·+M)∇)−1 ∈ L(L2

0,V ) and compute

〈KGv,KGPṼnu
′
n〉V

= 〈K∗GKGv, PṼnu
′
n〉V

= 〈K∗GKGv, PV (u′n − IJ·Kν (u′n))〉V + 〈K∗GKGv, S(πln − PL2
0
)(q · (u′n − IJ·Kν (u′n)))〉V

= 〈P ∗VK∗GKGv,u
′
n − IJ·Kν (u′n)〉H0(div) + 〈(πln − PL2

0
)S∗K∗GKGv, q · (u′n − IJ·Kν (u′n))〉H0(div)

n∈N ′′−→ 〈P ∗VK∗GKGv,u
′〉V = 〈KGv,KGv

′〉V ,

where the last line follows since πln converges pointwise to PL2
0

and div(u′n − IJ·Kν (u′n))
L2

⇀

divu′ by Lemma 6.11. Thus, with Lemma 6.10, Lemma 6.4 and the pointwise convergence of
πln towards PL2

0
we obtain that

lim
n→∞

〈Knpnu,u
′
n〉Xn = 〈Ku,u′〉X .

Theorem 6.38. Assume that Assumption 6.2 is satisfied and let αν be sufficiently large. Let
f ∈ L2 and u ∈ X be the solution to a(u,u′) = 〈f ,u′〉 for all u′ ∈ X. Then, there exists an
index n0 > 0 such that the solution un ∈Xn to an(un,u

′
n) = 〈f ,u′n〉 for all u′n ∈Xn exists for

all n > n0 and limn→∞ dn(u,un) = 0. Furthermore, if u ∈X ∩H2+s, s > 0, ρ ∈W 1+s,∞ and
b ∈W 1+s,∞, then

dn(u,un) . hmin(1+s,k)
n + hmin(s,lb)

n + hmin(s,lν)
n .

Proof. As in the proof of Thm. 6.26, we note that we can can apply Thm. 2.28 to conclude
that (An)n∈N is regular due to the previous results and Thm. 6.8. Furthermore, with the
same argumentation as in the proof of Thm. 5.33, we have that the right-hand side of the
discrete problem P-converges towards the right-hand side of the continuous problem. Together
with the injectivity of A, cf. Lemma 4.4, this allows us to apply Thm. 2.17, which yields the
existence of discrete solutions un ∈Xn to (6.11) for all n > n0. With the same argumentation
as in [Hal23, Thm. 19], see also Thm. 5.33, it follows that limn→∞ dn(u,un) = 0. For the
convergence rates, we notice that the argumentation from the proof of Thm. 6.26 can easily
be adapted to the heterogeneous case since we only have to consider the partial integration of
the additional pressure term 〈∇p · u, divnν u

′
n〉. Let ψ̃n be a suitable H1-interpolator of ∇p · u.

Then, we compute

〈∇p · u, divnν u
′
n〉 = 〈ψ̃n,divnν u

′
n〉+ 〈∇p · u− ψ̃n,divnν u

′
n〉

and with the same argumentation as in (6.43)

〈ψ̃n,divnν un〉 = 〈ψ̃n,divu′n +Rlnu
′
n〉Tn = 〈ψ̃n, divu′n〉Tn − 〈{{ψ̃n}}, Ju′nKν〉Fn

= −〈∇ψ̃n,u′n〉 = −〈∇(∇p · u),u′n〉+ 〈∇(∇p · u− ψ̃n),u′n〉

Since ‖∇p · u − ψ̃n‖H1 . h
min(s,lν)
n , the same argumentation as in Thm. 6.26 yields the

claim.
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6.4. Hybridization

6.4 Hybridization

Similar to Section 5.2.4, we want to discuss the possibility of hybridization for the fully
discontinuous scheme to reduce computational costs. As before, we only introduce the
necessary modifications to the formulation and do not discuss the analysis in detail. In contrast
to Section 5.2.4, where we only introduced facet variables for the tangential component, we
now also introdce an additional facet variable for the normal component, see Fig. 6.1. Thus,
we define the hybrid space XHDG

n by

XHDG
n := Xn ×L2(Fn).

In addition to the introduction of a hybrid version of the vector-valued liftingRlb
n from Section

5.2.4, we introduce a hybrid version of the scalar lifting operator. For τ ∈ Tn, let r∂τn ∈ Qn be
the solution to

〈r∂τn un, ψn〉 = −〈JunKν , ψn〉L2(∂τ) for all ψn ∈ Qn. (6.58)

We set Rlνn :=
∑

τ∈Tn r
∂τ
n and define the discrete divergence operator divnνun by

(divnνun)|τ := divun|τ +Rlνn un|τ , τ ∈ Tn. (6.59)

(a) DG (b) HDG

Figure 6.1: Comparison of DG and HDG degrees of freedom.

Then, we consider the problem: Find uHDG
n ∈XHDG

n such that

aHDG
n (un,u

′
n) = 〈f ,u′n〉 for all u′n ∈XHDG

n ,

where the sesquilinear form aHDG
n (·, ·) is defined by

aHDG
n (un,u

′
n) :=〈c2

sρdivnνun, divnνu
′
n〉 − 〈ρ(ω + iDn

b + iΩ×)un, (ω + iDn
b + iΩ×)u′n〉

+ 〈divnνun,∇p · u′n〉+ 〈∇p · un,divnνu
′
n〉+ 〈(Hess(p)− ρHess(φ))un,u

′
n〉

− iω〈γρun,u′n〉+ sβn(un,u
′
n).

To analyze the hybrid fully discontinuous Galerkin discretization with the techniques discussed
in Part I, we would have to show that the scheme can be interpreted as a discrete approximation
scheme. The most notable difference to the analysis in Section 6.2 is that the compactness
result from Lemma 6.7 would need to be adjusted to the hybridized setting. With techniques
similar to [KCR21, Thm. 4.3], we can show the following result.

Lemma 6.39. Let un ∈ Xn := XHDG
n be such that supn∈N ‖un‖Xn < ∞. Then there exists a

subsequence N′ ⊂ N and u ∈X such that un
L2

→ u, divnνun
L2

→ divu and Dn
bun

L2

→ ∂bu.

Afterwards, the construction to establish weak T-compatibility from Section 6.3 would have
to be adapted to the hybrid setting as well by suitably incorporating the additional facets
variables. We leave a detailed analysis of the hybrid fully discontinuous Galerkin scheme for
future work.
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CHAPTER 7

Numerical experiments

In this section, we perform numerical experiments to compare the previously introduced
methods computationally. First of all, we summarize the methods that we are considering
and give remarks on their implementation. Then, we validate the theoretical convergence
rates by considering convergence against an artificially constructed exact solution and a
reference solution. Afterwards, we explore the possibility of hybridization to reduce the
computational costs, consider the effects of the stabilization term introduced in Section 6.1,
and investigate the choice of stabilization parameters for the symmetric interior penalty
variants of the considered discretization schemes. Finally, we consider a computational
example with physically relevant coefficients for the sun. We conclude the section with a
discussion of the challenges that arise when considering the application of the developed
discretizations to computational helioseismology. The numerical experiments can be replicated
with the provided reproduction files [Bee23].

Contents of the chapter

7.1 Methods and implementational remarks . . . . . . . . . . . . . . . . . . . . . 105
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7.3 Sun parameters in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.4 Towards Computational Helioseismology . . . . . . . . . . . . . . . . . . . . . 119

7.1 Methods and implementational remarks

Before we delve into the numerical experiments, we want to provide an overview of the
different methods that we are considering. The overview encompasses the discrete spaces Xn,
the sesquilinear forms an(·, ·) and remarks on the implementation.

H1-conforming finite element discretization.

The first method under consideration is the H1-conforming discretization introduced by Halla
et. al. [HLS22], which we discussed in Section 5.1. We consider the following problem: Find
un ∈Xn = {u ∈H1 : u · ν = 0 on ∂O,u|τ ∈ Pk(τ) ∀τ ∈ Tn} such that

aH1

n (un,u
′
n) = 〈fn,u′n〉 ∀u′n ∈Xn,

where the sesquilinear form aH1

n (·, ·) is given by

aH1

n (un,u
′
n) = 〈c2

sρdivun,divu′n〉 − 〈ρ(ω + i∂b + iΩ×)un, (ω + i∂b + iΩ×)u′n〉
+ 〈divun,∇p · u′n〉+ 〈∇p · un, divu′n〉+ 〈(Hess(p)− ρHess(φ))un,u

′
n〉

− iω〈γρun,u′n〉.
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7.1. Methods and implementational remarks

To incorporate the boundary conditions ν · un = 0 on ∂O, we use Nitsche’s method, cf., for
example [JS09]. This means, that we consider the finite element space [Pk(Tn)]d ∩H1 and
add the following terms to the sesquilinear form:

− 〈c2
sρun · ν,divu′n〉∂O − 〈c2

sρ divun,u
′
n〉∂O + 〈αNk

2

h
c2
sρun,u

′
n〉∂O, (7.1)

where αN > 0 is a stabilization parameter.

H(div)-conforming discontinous Galerkin - Lifting variant.

The second method that we are considering is the H(div)-conforming discontinuous Galerkin
discretization, as introduced by Halla [Hal23] and reviewed in Section 5.2. We consider the
problem: Find un ∈Xn := {u ∈ H0(div) : u|τ ∈ Pk(τ) ∀τ ∈ Tn} such that

aH(div),LS
n (un,u

′
n) = 〈fn,u′n〉 ∀u′n ∈Xn,

where the sesquilinear form a
H(div),LS
n is given by

aH(div),LS
n (un,u

′
n) = 〈c2

sρdivun,divu′n〉 − 〈ρ(ω + iDn
b + iΩ×)un, (ω + iDn

b + iΩ×)u′n〉
+ 〈divun,∇p · u′n〉+ 〈∇p · un, divu′n〉
+ 〈(Hess(p)− ρHess(φ))un,u

′
n〉 − iω〈γρun,u′n〉.

(7.2)
To implement the method, we follow Remark 3.29. By definition of Dn

b , we have that

−〈ρ(ω + iDn
b + iΩ×)un, (ω + iDn

b + iΩ×)u′n〉Tn
= −〈ρ(ω + i(∂b +Rl

n) + iΩ×)un, (ω + i(∂b +Rl
n) + iΩ×)u′n〉Tn

= −〈ρ(ω + i∂b + iΩ×)un, (ω + i∂b + iΩ×)u′n〉Tn − 〈ρiRl
nun, (ω + i∂b + iΩ×)u′n〉Tn

− 〈ρ(ω + i∂b + iΩ×)un, iR
l
nu
′
n〉Tn − 〈ρiRl

nun, iR
l
nu
′
n〉Tn .

Due to the definition1 of the lifting operator (5.20), 〈·, i·〉 = −i〈·, ·〉 and 〈u, v〉 = 〈v, u〉, we
have that

−〈ρiRl
nun, (ω + i∂b + iΩ×)u′n〉Tn = −i〈ρJunKb, {{(ω + i∂b + iΩ×)u′n}}〉Fn ,

−〈ρ(ω + i∂b + iΩ×)un, iR
l
nu
′
n〉Tn = −i〈ρ{{(ω + i∂b + iΩ×)un}}, Ju′nKb〉Fn .

Furthermore, we introduce a variable r = Rl
nun ∈ Qn such that

−〈ρiRl
nun, iR

l
nu
′
n〉Tn = −〈ρr,Rl

nu
′
n〉Tn = 〈ρ{{r}}, Ju′nKb〉Fn .

By definition of the lifting, r ∈ Qn solves

〈ρr, s〉Tn = −〈ρJunKb, {{s}}〉Fn for all s ∈ Qn.

Thus, we implement the term −〈ρ(ω + iDn
b + iΩ×)un, (ω + iDn

b + iΩ×)u′n〉 in (7.2) through
a mixed formulation as in Remark (3.29) through the following terms:

〈ρ(ω + i∂b + iΩ×)un, (ω + i∂b + iΩ×)u′n〉Tn − i〈ρJunKb, {{(ω + i∂b + iΩ×)u′n}}〉Fn
− i〈ρ{{(ω + i∂b + iΩ×)un}}, Ju′nKb〉Fn + 〈ρ{{r}}, Ju′nKb〉Fn
− 〈ρr, s〉Tn − 〈ρJunKb, {{s}}〉Fn .

We note that the boundary conditions ν · un = 0 on ∂O can be directly incorporated in to
the H(div)-conforming finite element space Xn. Thus, we do not have to add any additional
terms to the sesquilinear form.

1Technically, we redefine Rl
n such that for η ∈W 1,∞: 〈ηRl

nun,ψn〉 = −〈ηJunKb, {{ψn}}〉Fn for all ψn ∈ Qn.
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Chapter 7. Numerical experiments

Remark 7.1 (Preasymptotic stability). The convergence theorem 5.33 states that there exists an
index n0 > 0 such that a unique discrete solution un ∈ Xn exists for all n > n0 and un

P→ u.
That means that the method is asymptotically stable. However, we have no specific knowledge of
n0. To ensure that the method is numerically stable, even pre-asymptotically, we add the terms
that implement the lifting operator twice.

H(div)-conforming discontinuous Galerkin - SIP variant.

For the sake of comparison, we will also consider a symmetric interior penalty variant of the
H(div)-conforming discontinuous Galerkin method. That means, we consider the problem:
Find un ∈Xn := {u ∈ H0(div) : u|τ ∈ Pk(τ) ∀τ ∈ Tn} such that

aH(div),SIP
n (un,u

′
n) = 〈fn,u′n〉 ∀u′n ∈Xn,

where the sesquilinear form a
H(div),SIP
n is given by

aH(div),SIP
n (un,u

′
n) = 〈c2

sρdivun,divu′n〉 − 〈ρ(ω + i∂b + iΩ×)un, (ω + i∂b + iΩ×)u′n〉
+ 〈ρ{{(ω + i∂b + iΩ×)un}}, Ju′nKb〉Fn + 〈ρ{{(ω + i∂b + iΩ×)u′n}}, JunKb〉Fn
− 〈ραb

h
JunKb, Ju′nKb〉Fn

+ 〈divun,∇p · u′n〉+ 〈∇p · un, divu′n〉+ 〈(Hess(p)− ρHess(φ))un,u
′
n〉

− iω〈γρun,u′n〉

for a stabilization parameter αb > 0. In contrast to the lifting stabilized version from [Hal23],
the penalty parameter αb has to be chosen large enough to ensure stability.

Fully discontinuous Galerkin - Lifting variant.

Furthermore, we consider the two fully discontinuous Galerkin discretizations that were
introduced and analyzed in Chapter 6. We consider the problem: Find un ∈ Xn := {u ∈
L2(O) : u|τ ∈ Pk(τ) ∀τ ∈ Tn} such that

aDG,LS,β
n (un,u

′
n) = 〈fn,u′n〉 ∀u′n ∈Xn,

where the sesquilinear form aDG,LS,β
n is given by

aDG,LS,β
n (un,u

′
n) = 〈c2

sρdivnν un, divnν u
′
n〉 − 〈ρ(ω + iDn

b + iΩ×)un, (ω + iDn
b + iΩ×)u′n〉

+ 〈divnν un,∇p · u′n〉+ 〈∇p · un,divnν u
′
n〉+ 〈(Hess(p)− ρHess(φ))un,u

′
n〉

− iω〈γρun,u′n〉+ sβn(un,u
′
n).

We recall that from Remark 6.1 that the choice β = 1 yields a SIP formulation for the diffusion
operator, i.e. we have that

aDG,LS,1
n (un,u

′
n) = 〈c2

sρ divun, divu′n〉 − 〈ρ(ω + iDn
b + iΩ×)un, (ω + iDn

b + iΩ×)u′n〉

− 〈c2
sρ{{divun}}, Ju′nK〉Fn − 〈c2

sρ{{divu′n}}, JunK〉Fn + 〈c2
sρ
αν
h

JunK, Ju′nK〉Fn
+ 〈divun,∇p · u′n〉+ 〈∇p · un, divu′n〉+ 〈(Hess(p)− ρHess(φ))un,u

′
n〉

− iω〈γρun,u′n〉

For β = 0, we have that

aDG,LS,0
n (un,u

′
n) = 〈c2

sρdivnν un,divnν u
′
n〉 − 〈ρ(ω + iDn

b + iΩ×)un, (ω + iDn
b + iΩ×)u′n〉

+ 〈divnν un,∇p · u′n〉+ 〈∇p · un, divnν u
′
n〉+ 〈(Hess(p)− ρHess(φ))un,u

′
n〉

− iω〈γρun,u′n〉+ 〈c2
sρ
αν
h

JunKν , Ju′nKν〉Fn
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For the implementation of Dn
b , we follow the same approach as for the H(div)-conforming

lifting method. In the case that β = 0, we apply the same argumentation for the discrete
divergence operator. By definition of divnν , we have that

〈c2
sρdivnν un, divnν u

′
n〉Tn =〈c2

sρdivun, divu′n〉Tn + 〈c2
sρR

lν
n un,divu′n〉Tn

+ 〈c2
sρ divun, R

lν
n u
′
n〉Tn + 〈c2

sρR
lν
n un, R

lν
n u
′
n〉Tn .

Using the definition of the lifting operator (6.8), we obtain

〈c2
sρR

lν
n un, divu′n〉Tn = −〈c2

sρJunKν , {{divu′n}}〉Fn ,
〈c2
sρdivun, R

lν
n u
′
n〉Tn = −〈c2

sρ{{divun}}, Ju′nKν〉Fn .

We now introduce the auxillary variable r = Rlνn un ∈ Qn to obtain

〈c2
sρR

lν
n un, R

lν
n u
′
n〉Tn = 〈c2

sρr,R
lν
n u
′
n〉Tn = −〈c2

sρ{{r}}, Ju′nKν〉Fn ,

where r ∈ Qn solves

〈c2
sρr, s〉Tn = −〈c2

sρJunKν , {{s}}〉Fn for all s ∈ Qn.

Altogether, we implement the term 〈c2
sρ divnν un,divnν u

′
n〉 through a mixed formulation as in

Remark (3.29) through the following terms:

〈c2
sρ divun, divu′n〉 − 〈c2

sρJunKν , {{divu′n}}〉Fn − 〈c2
sρ{{divun}}, Ju′nKν〉Fn

− 〈c2
sρ{{r}}, Ju′nKν〉Fn − 〈c2

sρr, s〉Tn − 〈c2
sρJunKν , {{s}}〉Fn .

Similar to our approach for the H1-conforming method, we add a Nitsche boundary term to
incorporate the boundary conditions ν · un = 0 on ∂O. Thus, we consider the finite element
space [Pk(Tn)]d and add the terms

− 〈c2
sρun · ν,divu′n〉∂O − 〈c2

sρ divun,u
′
n〉∂O + 〈αNk

2

h
c2
sρun,u

′
n〉∂O, (7.3)

where αN > 0 is a stabilization parameter.

Fully discontinuous Galerkin - SIP variant.

As for the H(div)-conforming method, we will also compare the introduced discontinuous
Galerkin methods with a symmetric interior penalty variant. That means, we consider the
problem: Find un ∈Xn := {u ∈ L2(O) : u|τ ∈ Pk(τ) ∀τ ∈ Tn} such that

aDG,SIP
n (un,u

′
n) = 〈fn,u′n〉 ∀u′n ∈Xn,

where the sesquilinear form aDG,SIP
n is given by

aDG,SIP
n (un,u

′
n) = 〈c2

sρ divun, divu′n〉 − 〈ρ(ω + i∂b + iΩ×)un, (ω + i∂b + iΩ×)u′n〉
+ 〈ρ{{(ω + i∂b + iΩ×)un}}, Ju′nKb〉Fn + 〈ρ{{(ω + i∂b + iΩ×)u′n}}, JunKb〉Fn
− 〈ραb

h
JunKb, Ju′nKb〉Fn

− 〈c2
sρ{{divun}}, Ju′nKν〉Fn − 〈c2

sρ{{divu′n}}, JunKν〉Fn + 〈c2
sρ
αν
h

JunKν , Ju′nKν〉Fn
+ 〈divun,∇p · u′n〉+ 〈∇p · un,divu′n〉+ 〈(Hess(p)− ρHess(φ))un,u

′
n〉

− 〈JunKν , {{∇p · u′n}}〉 − 〈{{∇p · un}}, Ju′nKν〉
− iω〈γρun,u′n〉

for stabilization parameters αb, αν > 0. In contrast to the lifting stabilized method from
Chapter 6, we have to choose the penalty parameter αb sufficiently large to guarantee stability.
To incorporate the boundary conditions, we add the Nitsche boundary terms (7.3) to the
sesquilinear form.
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7.2 Convergence studies

First of all, we want to examine the convergence behavior of the different method2 introduced
in Chapters 5 and 6. To this end, we consider the computational examples from [HLS22,
Sec. 4.2]. We choose the domain O = (−4, 4)2 ⊂ R2 and use a shape-regular unstructured
simplicial mesh with initial mesh size h = 1 such that for each refinement level L, we have a
mesh size of h = 2−L. Furthermore, choose the following parameters:

ρ = 1.5 + 0.2 cos(πx/4) sin(πy/2), c2
s = 1.44 + 0.16ρ, ω = 0.78 · 2π,

γ = 0.1, Ω = (0, 0), p = 1.44ρ+ 0.08ρ2.

The background flow b is chosen as

b =
cb
ρ

(
sin(πx) cos(πy)
− cos(πx) sin(πy)

)
, (7.4)

where cb ∈ R is a constant that scales the background flow. We note that b · ν = 0 on ∂O and
div(ρb) = 0. The source term f ∈ L2 is chosen such that the exact solution is given by

uexact =
1

ρ

(
(1 + i)g
−(1 + i)g

)
, (7.5)

where g(x, y) is the Gaussian given by

g(x, y) =
√
a/π exp(−a(x2 + y2)).

In this case, we set a = log(106) such that g equals
√
a/π10−6 ≈ 2 · 10−6 on the unit circle.

Thus, we can assume the boundary condition ν · u = 0 is fulfilled approximately. For this
example, we choose the Nitsche parameter as αN = 215 as in [HLS22]. We measure the
error of the discretization methods in the ‖ · ‖X -norm, which we interpret for the H(div)-
conforming DG and full DG methods in a broken way, i.e. for un ∈ Xn 6⊂ X, we interpret
‖un‖X = ‖un‖X,Tn with ‖ · ‖X,Tn as in (6.15). We note that we have ‖ · ‖X,Tn ≤ ‖ · ‖Xn for
the Xn-norms defined in Sections 5.2 and 6.1. Figure 7.1 displays the error in the ‖ · ‖X
norm for the H1-conforming-, the H(div)-conforming discontinuous Galerkin-, and the fully
discontinuous Galerkin discretization with β = 0 and β = 1 for k ∈ {2, 3, 4, 5} and cb = 0.1
which leads to a Mach number of ‖c−1

s b‖2L∞ ≈ 0.003. For the H1-conforming method, we
observe stable convergence of order k for k ≥ 3, which is in accordance with the theoretical
results from [HLS22]. While the error deteriorates for k = 2, this is not unexpected since the
requirements to satisfy Assumption 5.1 are not satisfied. For the other three methods, we
observe stable convergence of order k for all k ∈ {2, 3, 4, 5} as expected from Thm. 5.33 and
Thm. 6.38.
For the H(div)-conforming DG method, we also consider the second example from [HLS22,
Sec. 4.2], where the source term f is chosen as

f = (−iω + ∂b)

(
g
0

)
. (7.6)

Then we consider the convergence of the methods against a reference solution computed with
the respective method with polynomial degree k = 5 and mesh size h = 2−5. Furthermore,
we choose the Nitsche parameter αN = 215 as in [HLS22]. Figure 7.2 displays the reference

2Unless explicitly specified otherwise, we consider the lifting versions of the H(div)-conforming DG and the
full DG methods.
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Figure 7.1: Comparison of the H1-conforming method, the H(div)-conforming DG method,
and the full DG method with β = 0 and β = 1 for Mach number ‖c−1

s b‖2L∞ ≈ 0.003 and
polynomial degree k ∈ {2, 3, 4, 5}.
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solutions computed with the H(div)-conforming DG method for cb = 0.1 and cb = 0.4 which
corresponds to the Mach numbers ‖c−1

s b‖2L∞ ≈ 0.003 and ‖c−1
s b‖2L∞ ≈ 0.053. Furthermore,

Fig. 7.3 displays the error in the ‖·‖X -norm for theH1-conforming and theH(div)-conforming
DG method for Mach numbers ‖c−1

s b‖2L∞ ≈ 0.003, 0.013, 0.03, 0.053. We observe only slight
differences between both methods. In particular, we observe a loss of convergence for both
methods for increasing Mach number. Due to the high computational costs associated with
computing the reference solution, similar experiments with the fully discontinuous Galerkin
methods are left for future work.

Figure 7.2: Real part of the first entry of the reference solutions for ‖c−1
s b‖2L∞ ≈ 0.003 (left)

and ‖c−1
s b‖2L∞ ≈ 0.053 (right) computed with the H(div)-conforming DG method with k = 5

and h = 2−5.
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Figure 7.3: ‖ · ‖X -norm for the H1-conforming and the H(div)-conforming DG method for
Mach numbers ‖c−1

s b‖2L∞ ≈ 0.003, 0.013, 0.03, 0.053 with k = 4 against a reference solution
computed with the respective method for k = 5 and h = 2−5.
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7.2.1 Hybridization

In Sections 5.2.4 and 6.4 we briefly introduced hybrid DG versions of the H(div)-conforming
and the fully discontinuous Galerkin method to reduce the computational costs. While we
did not pursue a theoretical analysis of the hybrid versions, we want to explore how they
perform numerically. Therefore, we return to the first example presented in the previous
section, where the source term f is chosen such that the exact solution is given by (7.5). This
allows us to compute the error in the ‖ · ‖X norm. First, we consider the hybrid version of the
H(div)-conforming DG method introduced in Section 5.2.4. Figure 7.4 displays the error of
both, the original DG and the hybrid DG, method and the number of non-zero entries of the
associated system matrices as a measure of sparsity. We observe that the hybrid version of the
discretization reduces the number of non-zero entries and therefore the computational effort
significantly while achieving the same accuracy.
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Figure 7.4: ‖ · ‖X -error of the H(div)-conforming DG- and the hybrid H(div)-conforming DG
method (dashed) for ‖c−1

s b‖2L∞ ≈ 0.003 and polynomial degrees k ∈ {2, 3, 4} (left) and the
non-zero entries of the associated system matrices (right).

Now, we also want to consider a hybrid version of the fully discontinuous Galerkin method, as
briefly introduced in Section 6.4. To this end, we make the same comparison as in Fig. 7.4
for the fully discontinuous case in Fig. 7.5 for β = 0 and in Fig. 7.6 for β = 1. We fix the
stabilization parameter αν = 1000 · k2 for both methods. For β = 0, the error of the hybrid
method agrees with the error of the DG method except for k = 4 at the last refinement level,
where the chosen stabilization parameter αν might be too small to ensure the stability of the
HDG method, cf. also the discussion in Section 7.2.2. As before, we observe a significant
reduction in the nonzero entries of the matrix, which improves the computational feasibility.
For β = 1, we achieve the same errors with the hybrid DG method as with the DG method,
while reducing the number of nonzero entries. In comparison with the casee where β = 0, the
reduction is less pronounced; nevertheless, the reduction is still significant.
Altogether, we observe that the hybrid versions of the H(div)-conforming DG and the fully
discontinuous Galerkin method reduce the computational costs significantly while achieving
the same accuracy as the original methods. Therefore, hybridization seems to be a promising
approach to reduce the computational complexity of the methods making them more feasible
for physically relevant applications. For the fully discontinuous method with β = 0, the
stabilization parameter αν might have to be chosen with special care to ensure that the
method is stable.
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Figure 7.5: ‖ · ‖X -error of the fully discontinuous Galerkin- and the hybrid fully discontinuous
Galerkin method with β = 0 (dashed) and αν = 1000·k2 for ‖c−1

s b‖2L∞ ≈ 0.003 and polynomial
degrees k ∈ {2, 3, 4} (left) and the the non-zero entries of the associated system matrices
(right).
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Figure 7.6: ‖ · ‖X -error of the fully discontinuous Galerkin- and the hybrid fully discontinuous
Galerkin method with β = 1 (dashed) and αν = 1000·k2 for ‖c−1

s b‖2L∞ ≈ 0.003 and polynomial
degrees k ∈ {2, 3, 4} (left) and the the non-zero entries of the associated system matrices
(right).

113



7.2. Convergence studies

7.2.2 The role of the stabilization term sβn

For the fully discontinuous Galerkin method we introduced a stabilization term sβn defined by

sβn(un,u
′
n) := 〈c2

sρ
αν
h

JunKν , Ju′nKν〉Fn − β〈c2
sρR

lν
n (un), Rlνn (u′n)〉,

where β ∈ {0, 1}. For the analysis in Chapter 6 we required that αν > 0 is chosen large enough
to prove that the method is stable. Here, we want to explore numerically what happens if
we choose αν = β = 0, i.e. if we do not add any stabilization term. Again, we consider the
exact solution (7.5) and measure the error in the ‖ · ‖X -norm. Figure 7.7 displays the errors
of the fully discontinuous method without the stabilization term sβn and its hybrid version. We
observe that the DG method still seems to be stable and converges with the expected order of
k for k ∈ {2, 3, 4}, while the hybrid DG version seems to be unstable for k ≥ 3.
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Figure 7.7: ‖ · ‖X -error for the fully discontinuous and the hybrid fully discontinuous method
with αν = β = 0 for k ∈ {2, 3, 4} and ‖c−1

s b‖2L∞ ≈ 0.003.

A possible reason for the instability of the hybrid DG method could be that the kernel of the
lifting operator is non-trivial. Let us recall the definition of the hybrid local lifting operator
from Section 6.4. For each element τ ∈ Tn, we define r∂τn as the solution to

〈r∂τn un, ψn〉 = −〈JunKν , ψn〉∂τ ∀ψn ∈ Qn = Plν (τ).

Then, if un ∈ [Pk,d(Tn)]d, we have that JunKν ∈ Pk(∂τ), and thus ψn ∈ P lν (τ) might not have
enough degrees of freedom on ∂τ with lν = k to ensure that the kernel of the lifting operator
is trivial, cf., Fig. 7.8. It is not quite clear why this issue is not present for the DG method, but
it could be related to the fact that the definition of the DG lifting operator involves the average
of ψn. Thus, it might be possible that we have contributions from neighboring elements that
prevent a non-trivial kernel. In Fig. 7.9 we compare the DG and the HDG method without
the stabilization term sβn as in Fig. 7.7, but with an increased polynomial degree of the scalar
lifting variable to lν = k + 4. We observe that the hybrid DG method seems to be more stable
for k = 3 and only unstable for k = 4 at the last refinement level. This might be the case
because the higher polynomial degree of the lifting variable prevents a non-trivial kernel. Let
us stress that we do not recommend this modification because a higher polynomial degree of
the lifting variable increases the computational costs by increasing the dimension of Qn.
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Figure 7.8: Degrees of freedom of ψn ∈ P4(τ). In total, we have 15 degrees of freedom, but
only 12 of them are associated with ∂τ .
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Figure 7.9: ‖ · ‖X -error of the DG method (left) and the HDG method (right) without the
stabilization term sβn and increase polynomial degree lν = k + 4 for the hybrid lifting operator
for k ∈ {2, 3, 4} and ‖c−1

s b‖2L∞ ≈ 0.003.
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Altogether, these results show that the stabilization term sβn is indeed necessary to ensure that
the method is stable. While the DG method performs adequately without the stabilization
term for this example, it is not clear that this is the case for other scenarios. Furthermore, the
HDG method seems to be more reliant on the stabilization term sβn, and does not appear to be
stable without it.

7.2.3 The choice of stabilization parameters for the SIP methods

The main motivation to introduce the lifting operator Rlb
n is to avoid having to choose the

stabilization parameter αb that would occur in a symmetric interior penalty formulation for
the H(div)-conforming and fully discontinuous Galerkin methods, as this choice would lead to
a more restrictive assumption on the Mach number ‖c−1

s b‖2L∞ . However, the implementation
of the lifting operator is computationally expensive, and thus, we want to investigate how the
symmetric interior penalty variants of both methods perform computationally for different
stabilization parameters. We consider the first example from the previous sections where the
exact solution was given by (7.5), which allows us to compute the error in the ‖ ·‖X -norm. We
compare the errors of the SIP versions with the error of theH1-conforming discretization which
does not involve stabilization parameters. To ensure that the H1-conforming method is stable
without using special meshes, we fix the polynomial degree to k = 4. Figure 7.10 displays
the discretization errors of the H(div)-conforming SIP DG method for cb ∈ {0.1, 0.2, 0.5}
which lead to Mach numbers ‖c−1

s b‖2L∞ ≈ 0.003, 0.013, 0.083. To achieve a similar order of
convergence as the H1-conforming method, the stabilization parameter αb has to be chosen
quite large3, e.g. αb ≥ 104 · k2, which can become problematic as the condition numbers of
the system matrices increase with the stabilization parameter. We further observe that for
the higher Mach numbers, the error of the method implemented with a lower stabilization
parameter seems to be worse. Note, however, that the influence of the background flow b
might be mitigated because the right-hand side f is constructed explicitly such that the exact
solution is given by (7.5) and therefore also changes with cb.
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Figure 7.10: Error of the H(div)-SIP method for stabilization parameters αb = 10n · k2,
n ∈ {0, 1, 2, 3, 4, 5}, and cb ∈ {0.1, 0.2, 0.5} compared to the error of the H1-conforming
discretization for polynomial degree k = 4.

Figures 7.11 and 7.12 show the error of the fully discontinuous SIP discretization for αν ∈
{1, 10, 100, 1000} with fixed stabilization parameter αb = 104 ·k2 and αb = 105 ·k2, respectively.

3The required stabilization parameters are unusually large in fact. It is not clear why this is the case; it might
be a consequence of the specific choice for b or indicate an error in the implementation.
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As before, we consider cb ∈ {0.1, 0.2, 0.5}. In contrast to the previous example, the influence of
the Mach number is more profound in this example. For ‖c−1

s b‖2L∞ ≈ 0.003 and ‖c−1
s b‖2L∞ ≈

0.053, the error with αν = 1000 · k2 is close to the error of the H1-conforming method,
while the lower choices for αν lead to instability for higher refinement levels. In contrast,
for ‖c−1

s b‖2L∞ ≈ 0.083, all choices for αν perform poorly at the last refinement level. For
αb = 105 · k2 the results differ significantly. For ‖c−1

s b‖2L∞ ≈ 0.003 and ‖c−1
s b‖2L∞ ≈ 0.053,

none of the choices for αν leads to an error approaching the error of the H1-conforming
method, and for the latter Mach number the choice αν = 1000 · k2 yields the worst results. For
‖c−1
s b‖2L∞ ≈ 0.083, the choice αν = 1 · k2 yields the best results which closely match the error

of the H1-conforming method. We note that these effects might be severely influenced by the
condition numbers of the system matrices which increase with the stabilization parameters.
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Figure 7.11: Error of the fully discontinuous SIP method for stabilization parameters αν =
10n · k2, n ∈ {0, 1, 2, 3} and αb = 10000 · k2, and cb ∈ {0.1, 0.2, 0.5} compared to the error of
the H1-conforming discretization for polynomial degree k = 4.
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Figure 7.12: Error of the fully discontinuous SIP method for stabilization parameters αν =
10n · k2, n ∈ {0, 1, 2, 3} and αb = 100000 · k2, and cb ∈ {0.1, 0.2, 0.5} compared to the error of
the H1-conforming discretization for polynomial degree k = 4.

We consider a final example with the fully discontinuous SIP methods with αb = 10n · k2

for n ∈ {0, 1, 2, 3, 4, 5} and fixed αν = 100 · k2 in Fig. 7.13. As before, the results vary
with the Mach number ‖c−1

s b‖2L∞ . For example αb = 105 · k2 yields the best results for
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‖c−1
s b‖2L∞ ≈ 0.013 and ‖c−1

s b‖2L∞ ≈ 0.083, but is not stable for ‖c−1
s b‖2L∞ ≈ 0.003.
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Figure 7.13: Error of the fully discontinuous SIP method for stabilization parameters αb =
10n · k2, n ∈ {0, 1, 2, 3, 4, 5} and αν = 100 · k2, and cb ∈ {0.1, 0.2, 0.5} compared to the error
of the H1-conforming discretization for polynomial degree k = 4.

In summary, we notice that the right choice of the stabilization parameters αb and αν is very
delicate and seems to be dependent on the Mach number. We seem to require unusually large
stabilization parameters αb to ensure the stability of the H(div)-conforming DG and full DG
SIP methods which can lead to a significant increase in the condition number of the system
matrices. We note that this phenomenon might be specific to the example under consideration.
Additionally, we observe that choosing a combination of αb and αν can be tricky, in particular
since the Mach number seems to have a significant influence on the results.

7.3 Sun parameters in 2D

In this section, we want to consider a two-dimensional computational example similar to
[CD18, Sec. 6] which is motivated by the study of the Sun. In particular, we will use realistic
values for the density ρ, the sound-speed cs and the pressure p provided by the modelS
[Chr+96] of the solar interior. For the computational examples, we will use a mesh that is
fitted to the drastic change of the density and the sound speed in the convection zone. Figure
7.14 visualizes these changes in magnitude and displays an example of the adapted mesh.
We choose the parameters

ω = 2πfhz, γ =
ω

100
,

where the frequency fhz is chosen as 3mHz. Furthermore, with R = 1.0007126 being the
radius of the sun, the background flow is chosen as

b =
cb
R
cs

(
−y
x

)
. (7.7)

We note that by the construction of the background flow, we have that ‖c−1
s b‖2L∞ ≈ c2

b. The
source term f is chosen as

f = (−iω + ∂b)

(
g
0

)
where g(x, y) is a gaussian located at (0.5, 0.5) with radius of distribution equal to 0.1, i.e.

g(x, y) =
√
a/π exp(−a((x− 0.5)2 + (y − 0.5)2)), a = log(106)/0.12.
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Figure 7.14: Mesh (on the left) fitted to the drastic changes in the density and sound speed
(on the right) towards the boundary with mesh size 0.25 in the interior and mesh size 0.025
near the boundary.

Furthermore, we impose natural boundary conditions of the form divu = 0.
For the implementation of the H(div)-conforming DG and the full DG method we use the
hybrid DG versions to reduce the computational costs. Figure 7.15 shows the real part of the
first entry of the solutions computed with the three methods for cb = 0.2, i.e. ‖c−1

s b‖2L∞ ≈ 0.04,
and k = 6. For these parameters, the results are indistinguishable which indicates that all
three methods perform reasonably well. In Fig. 7.16 and 7.17, the results for cb = 1.0 and
cb = 1.5 are shown, i.e. for ‖c−1

s b‖2L∞ ≈ 1.0 and ‖c−1
s b‖2L∞ ≈ 2.25, which means that the flow

is not transsonic anymore and the smallness assumption on the Mach number is violated. In
these cases, we observe differences between the H1-conforming and the other three methods,
since both, the H(div)-conforming DG and the fully discontinuous DG methods, seem to allow
for more oscillation than the H1-conforming method. This is not necessarily unexpected,
in particular since the three nonconforming methods all involve the lifting operator for the
J·Kb-jump which penalizes oscillations weaker than a corresponding SIP method would. Finally,
let us stress that this is merely a visual comparison and since we have no knowledge of the
exact solution, we cannot make precise statements about the accuracy of the methods.

7.4 Towards Computational Helioseismology

To conclude this section, we want to return to the physical motivation behind studying Gal-
brun’s equation – computational Helioseismology. We will not perform numerical experiments
in this Section but rather discuss some aspects of solving the equation in a more realistic
setting.

7.4.1 Reducing dimensions for axisymmetrical geometries

Considering a physically relevant setting, we have to deal with the significant increase in
computational costs associated with solving a three-dimensional problem. It is well-known
that increasing the dimension increases the computational costs, cf. Fig. 7.18. In particular
since solving Galbrun’s equation is already computationally expensive in 2D, this can become
problematic. In the following, we will briefly discuss how the axisymmetrical geometry of the
sun can be exploited to reduce the dimension of the problem.
It has been argued in [Giz+17] that the sun can be considered as axisymmetrical around the
z-axis. In spherical coordinates, we can associate a point x = (r, θ, ϕ), where r is the radius,
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(a) H1-conforming (b) Hybrid H(div)-conforming

(c) Hybrid DG with β = 0 (d) Hybrid DG with β = 1

Figure 7.15: Real part of the first entry of solutions computed with the H1-conforming, the
hybrid H(div)-conforming DG, and the hybrid fully discontinuous Galerkin-method with
β ∈ {0, 1} method for ‖c−1

s b‖2L∞ ≈ 0.04 and k = 6 on a mesh with maximal mesh size 0.025
in the interior and 0.005 on the boundary.
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(a) H1-conforming (b) Hybrid H(div)-conforming

(c) Hybrid DG with β = 0 (d) Hybrid DG with β = 1

Figure 7.16: Real part of the first entry of solutions computed with the H1-conforming, the
hybrid H(div)-conforming DG, and the hybrid fully discontinuous Galerkin-method with
β ∈ {0, 1} method for ‖c−1

s b‖2L∞ ≈ 1.0 and k = 6 on a mesh with maximal mesh size 0.025 in
the interior and 0.005 on the boundary.
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(a) H1-conforming (b) Hybrid H(div)-conforming

(c) Hybrid DG with β = 0 (d) Hybrid DG with β = 1

Figure 7.17: Real part of the first entry of solutions computed with the H1-conforming, the
hybrid H(div)-conforming DG, and the hybrid fully discontinuous Galerkin-method with
β ∈ {0, 1} method for ‖c−1

s b‖2L∞ ≈ 2.25 and k = 6 on a mesh with maximal mesh size 0.025
in the interior and 0.005 on the boundary.

(a) 2D (b) 3D

Figure 7.18: Degrees of freedom for P2-elements on simplices in 2D and 3D for continuous
Galerkin methods. In 2D, we have 1

2(k + 1)(k + 2) degrees of freedom per element, while in
3D we have 1

6(k + 1)(k + 2)(k + 3) degrees of freedom per element, cf. [EG21a, Sec. 7.3].
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Figure 7.19: A three-dimensional axisymmetrical geometry (on the left) and an associated
two-dimensional generating section (on the right).

θ the polar angle and ϕ the azimuthal angle. Then, the assumption of an axisymmetrical
geometry means that the solution is independent of ϕ which means that we can consider a
two-dimensional generating section of the original geometry, cf., Fig. 7.19. In particular, this
potentially allows us to decompose the solution of the three-dimensional problem into a set of
independent two-dimensional problems. The authors refer to this setup as a 2.5D problem.
For a more detailed explanation of the reduction of the dimension in the case of Galbrun’s
equation, we refer to [CD18, Appendix C].

7.4.2 Wave propagation in the atmosphere

So far, we have only considered Dirichlet boundary conditions of the form ν · u = 0 on ∂O.
However, this boundary condition neglects the propagation of waves in the solar atmosphere.
In [Hal22], the following coupled system that takes wave propagation in the atmosphere into
account was derived and analyzed:

−∇(ρc2
s divu+∇p · u) +∇p divu+ Hess(p)u

−ρHess(φ)u− ρ(ω + i∂b + iΩ×)2u− iωγρu = f in Br2 , (7.8a)

div
(e2η

ρ
(m2 + iωγ)−1∇v

)
− e2η

c2
sρ
v = 0 in Bc

r2 , (7.8b)

ν · eηρ−1(m2 + iωγ)−1∇v = ν · u on ∂Br2 , (7.8c)

div
(
eηρ−1(m2 + iωγ)−1∇v

)
= divu on ∂Br2 . (7.8d)

Here Br2 is a ball of radius rs such that suppf ⊂ Br2 and Bc
r2 is the exterior domain. We

further assume that in Bc
r2 the parameters cs, ρ, and p only depend on the radial coordinate

r = |x|. Furthermore, we define m2 := m1 + (ω+ iΩ×)(ω+ iΩ×) with m1 := −ρ−1(Hess(p)−
ρHess(φ)− c2

sρqq
T ) and η(r) :=

∫ r
r2

∂rp(r′)
c2s(r

′) ρ(r′)dr′. Under the assumption that

‖c−1
s b‖2L∞ <

1

1 + tan2 θ
,

where θ is defined similarly as in Chapters 4, 5, and 6, the system (7.8) admits a unique
solution (u, v) [Hal22, Prop. 5.4]. The implementation of the system, however, remains an
open problem for research. To treat wave equations on unbounded domains, one usually
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introduces an artificial boundary on which one has to impose appropriate boundary conditions,
so-called transparent boundary conditions. Unfortunately, traditional methods to incorporate
transparent boundary conditions, for example Perfectly Matched Layers [Ber94], are not
equipped to deal with the strongly varying coefficients in the solar atmosphere, cf., Fig 7.14. To
overcome this issue, a new technique – learned infinite elements – has been developed recently
[Pre21; HLP21] which allows for more flexibility. Applying this technique to incorporate wave
propagation in the atmosphere through (7.8) is an objective for further research.
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CHAPTER 8

Conclusion

Summary

In the first part of the thesis, we introduced the abstract framework that serves as a basis
for our analysis. Specifically, we introduced the notions of (weak) T-coercivity, discrete
approximation schemes and (weak) T-compatibility. Subsequently, we applied these concepts
to the Helmholtz equation to explain the general ideas of the analysis within a more accessible
context. In the second part, we then applied the abstract framework to Galbrun’s equation. We
began by examining the well-posedness of the continuous problem and evaluated two existing
discretization schemes: an H1-conforming discretization [HLS22] and an H(div)-conforming
discontinuous Galerkin scheme [Hal23]. In Chapter 6, we then introduced and analyzed a
fully discontinuous Galerkin scheme for Galbrun’s equation. Building upon the structures
established in [Hal23], we demonstrated that the discretization can be interpreted as a discrete
approximation scheme. Then we constructed a discrete Tn-operator such that the discrete
problem is weakly T-compatible in the sense of Thm. 2.28. To conclude the analysis, we
proved optimal order convergence in the ‖ · ‖X -norm provided the exact solution is sufficiently
regular and the degree of the lifting operators is chosen equal to the polynomial degree of the
discretization. Finally, we performed numerical examples to validate the theoretical results.
We considered the convergence behavior of the method against a manufactured solution and a
reference solution. Furthermore, we considered hybrid versions of the H(div)-conforming DG
and the full DG method to reduce computational costs, considered an example with physically
relevant parameters, and briefly described further computational challenges when moving
toward computational Helioseismology.

Outlook

In Section 7.4 we already discussed some challenges that arise when moving toward computa-
tional Helioseismology: the computational costs associated with physically realistic simulations
and the need for a more sophisticated treatment of physically realistic boundary conditions.
Additionally, we already investigated hybrid versions of the H(div)-conforming discontinuous
Galerkin and the fully discontinuous Galerkin method computationally. One goal for further
research is to analyze these methods with the techniques employed in this thesis by incorpo-
rating the facet unknowns in the construction of the T-operators. Considering the numerical
results in Sections 7.2.1 and 7.2.2, it makes sense to focus on the analysis of the hybridized
fully discontinuous Galerkin method to the case where β = 1, i.e. where we are considering
the combination of a lifting method for the convection operator and a symmetric interior
penalty method for the diffusion operator. With this combination, we avoid potential issues
with the kernel of the scalar lifting operator, while also avoiding stronger restrictions on the
Mach number through the lifting operator for the convection term. In view of Section 7.2.3, it
might also be worthwhile to investigate the unusually high stabilization parameters of the SIP
method further.
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CHAPTER A

Appendix

In this appendix, we collect some broader mathematical theory that is employed through the
thesis and is generally expected to be known by the reader. We assume that the reader is
familiar with the basic concepts of functional analysis, in particular, the notions of Banach-,
Hilbert-, Lp-, and Sobolev spaces. The first section deals with fundamental definitions and
results from Operator theory. Then, we discuss Fredholm operators and their properties. In
the final section, we present general and FEM-specific inequalities, including approximation
results.

A.1 Operator theory

In the following sections, we will denote, unless specified otherwise, by X and Y Banach
Spaces and by V and W Hilbert spaces over a field K. We note by X ′, Y ′, V ′ and W ′ their
respective dual spaces. Usually, we think of K ∈ {R,C}. We call a linear transformation
A : X → Y a linear operator from X to Y .

Definition A.1 (Range, kernel and cokernel). Let A : X → Y be a linear operator. Then we
define its range, kernel and cokernel as

ran(A) := {Ax : x ∈ X} ⊆ Y,
ker(A) := {x ∈ X : Ax = 0} ⊆ X,

coker(A) := Y/ ran(A) ⊆ Y.

Definition A.2 (Bounded Operators). We call a linear operator A : X → Y bounded, if there
exists a constant C > 0 such that

‖Ax‖Y ≤ C‖x‖X for every x ∈ X.

We denote the space of all bounded linear operators from X to Y by L(X,Y ). and define the
operator norm of A as the smallest such constant, i.e.

‖A‖L(X,Y ) := sup
x∈X,‖x‖X 6=0

‖Ax‖Y
‖x‖X

= sup
x∈X,‖x‖X=1

‖Ax‖Y .

In the following, we write L(X) := L(X,X). Note further, that all linear operators on
finite-dimensional spaces are bounded.

Definition A.3 (Compact operator). A bounded linear operator A ∈ L(X,Y ) is called A
compact, if it maps bounded sets in X to precompact sets in Y , i.e. for every bounded set
X ′ ⊂ X, A(X ′) ⊂ Y is compact.

Lemma A.4. Let A ∈ L(X,Y ). Then, the following are equivalent
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(i) A is compact in the sense of definition A.3.

(ii) If (xn)n∈N ⊂ X is a bounded sequence, then (Axn)n∈N has a convergent subsequence in Y .

(iii) The set {Ax : x ∈ X, ‖x‖X ≤ 1} ⊂ Y is compact.

Proof. See [BS18, Lemma 4.2.1]

We call two an embedding between two Banach spaces X and Y , X ⊂ Y , compact, if the
embedding operator ι : X → Y is a compact operator. The following well-known theorem
states that the embedding between certain Sobolev spaces is compact.

Theorem A.5 (Rellich-Kondrachov). Let D ⊂ Rd be an open and bounded Lipschitz domain.
Further, let k > 0 and 1 ≤ p ≤ ∞. Then the following embeddings are compact

(i) If sp ≤ d, W s,p(D) ↪→ Lq(D) for all 1 ≤ q ≤ pd
d−sp .

(ii) If sp > d, W s,p(D) ↪→ C0(D).

(iii) W s,p(D) ↪→W s′,p for all s > s′.

Proof. See [EG21a, Theorem 2.35] and the references therein.

Definition A.6. A bounded linear operator A ∈ L(X,Y ) is said to be of finite rank, if
ran(A) ⊂ Y is finite-dimensional.

Definition A.7 (Adjoint operator on Hilbert spaces). Let V and W be Hilbert spaces and
A ∈ L(V,W ). We call an operator A∗ ∈ L(W,V ) such that

(Au, v) = (u,A∗v) for all u ∈ V, v ∈W

the adjoint operator of A. If V = W and A = A∗ we call A self-adjoint or symmetric. We note
that A∗∗ = A.

Lemma A.8. Let V and W be Hilbert spaces and A ∈ L(V,W ) be a bounded linear operator.
Then, we have that

ran(A)⊥ = ker(A∗),

ker(A)⊥ = ran(A∗).

Theorem A.9 (Riesz representation theorem). Let V be a Hilbert space and let F : V → K be a
(anti-)linear map. Then there exists a unique element u ∈ V such that

F (v) = (u, v)V for all v ∈ V.

Furthermore, there holds
‖F‖V ′ = ‖u‖V

Proof. See [BS18, Thm. 1.4.4].

The Riesz representation theorem implies the following useful result that we will employ to
speak simultaneously of sesquilinear forms and linear operators.

Corollary A.10. Let V be a Hilbert space and a : V ×V → K be a bounded sesquilinear (bilinear)
form. Then there exists a unique operator A ∈ L(V ) such that

A(u, v) = (Au, v)V for all u, v ∈ V.
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Remark A.11. Using the Riesz representation theorem A.9, we can show that for any linear
operator A ∈ L(V,W ) the adjoint operator from definition A.7 exists and is unique. Thus, it
makes sense to speak of "the" adjoint operator.

Definition A.12 (Projection operator). Let X be a Banach space. We call P ∈ L(X) a
projection operator if P 2 = P . If V is a Hilbert space, we call P an orthogonal projection if P is
a projection operator with

(Pu, (Id−P )v)V = 0 for all u, v ∈ V.

Recall that we call a vector space Y the direct algebraic sum of subspaces Y1, . . . , YN ⊂ Y and
write

Y =
⊕

i=1,...,N

Yi,

if each element y ∈ Y can be uniquely written as y =
∑N

i=1 yi, yi ∈ Yi for i = 1, . . . , N . In this
case, there exists projection operators PYi : Y → Yi, y 7→ yi. An algebraic decomposition of a
Hilbert space Y is called topological decomposition, denoted by ⊕, if the associated projection
operators PYi are continuous, i = 1, . . . , N .
The following lemma shows that there is a one-to-one correspondence between direct sums
and projection operators.

Lemma A.13. Let X be a Banach space such that X = V ⊕W , i.e. for each u ∈ X we can
write u = v + w, v ∈ V , w ∈ W . Set Pu = v for all u ∈ X. Then we have that P ∈ L(X),
(Id−P )u = w for all u ∈ X and P 2 = P . Furthermore, it holds that

v ∈ V ⇔ Pv = v and w ∈W ⇔ (Id−P )w = w.

Conversely, if P ∈ L(X) is a projection operator, then

X = ran(P )⊕ ran(Id−P ).

Proof. See [Zei90a, Lemma 21.37].

A.1.1 Spectral theory for compact self-adjoint operators

Let V be Hilbert and A ∈ L(V ) be a bounded linear operator. We define the spectrum of A as

σ(A) = {λ ∈ C : λ Id−A is not bijective}.

The following result shows in particular that the spectrum of a compact operator consists of
its eigenvalues and possibly zero.

Lemma A.14. Let A ∈ L(V ) be a compact operator.

(i) If dimV =∞, then 0 ∈ σ(A).

(ii) If λ ∈ σ(A), λ 6= 0, then λ is an eigenvalue of A, i.e. there exits an eigenvector u ∈ V such
that Au = λu.

Proof. To show (i), assume that 0 6∈ σ(A). Then, T is bijective and Id = TT−1 is compact. By
Lemma A.4, the unit ball B1 := {v ∈ V : ‖v‖V ≤ 1} ⊂ V is compact. This, however, implies
that V is finite-dimensional which is a direct consequence of the Riesz lemma [BS18, Lemma
1.2.12] and contradicts the assumption that dimV =∞. For (ii), we note that by Corollary
A.24, λ Id−A is Fredholm with index zero. Hence, due to Lemma A.26, λ Id−A is either
bijective or neither injective nor surjective. Since λ ∈ σ(A), λ Id−A cannot be bijective and
thus, there exists u ∈ V such that (λ Id−A)u = 0.
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If the operator is not only compact but also self-adjoint, the spectrum can be classified further.

Lemma A.15. If A ∈ L(V ) is compact and self-adjoint, then σ(A) ⊂ R.

Proof. See [BS18, Thm. 5.3.15, (i)].

Theorem A.16 (Spectral theorem for compact self-adjoint operators). Let H be a nonzero
complex or real Hilbert space and A ∈ L(H) be a self-adjoint and compact operator. Then there
exists an orthonormal basis (ei)i∈N of H consisting of eigenvectors of A and eigenvalues (λi)i∈N ,
N ⊂ N, such that

Au =
N∑
i=1

λi(ei, u)Hei. (A.1)

If N = N, then limi→∞ λi = 0.

Proof. See [BS18, Thm. 5.3.15, (v)].

Remark A.17 (Eigenbasis of L2 w.r.t. the Laplacian). We can apply the previous theorem to
the Laplace operator ∆ : H1

0 (D) → L2(D) with Dirichlet boundary conditions. Assuming that
D ⊂ Rd is an open and bounded Lipschitz domain, the Rellich-Kondrachov theorem A.5 yields
that the embedding operator ι : H1

0 (D) → L2(D) is compact. Furthermore, we note that the
inverse of the Laplacian ∆−1 : L2(D)→ H1

0 (D) exists and is a bounded linear operator. Thence,
the composition ι ◦∆−1 : L2(D)→ L2(D) is a compact operator and it is self-adjoint since the ∆
is self-adjoint. Thus, we can apply the spectral theorem A.16 to the operator ι ◦∆−1 and conclude
the existence of an eigenbasis of L2(D) consisting of eigenvectors of ∆.

A.2 Fredholm operators

In this section, we will introduce Fredholm operators and present results to which we refer on
numerous occasions in section 2. Fredholm operators are applied in a variety of mathematical
fields, for instance, the study of linear integral equations, K-theory or the analysis of elliptic
PDEs. This section is based on [BS18, Chapter 4] and [GGK90, Chapter XI].
Intuitively speaking, a Fredholm operator is "almost" invertible in the following sense. An
operator A : X → Y between vector spaces X and Y is an isomorphism if and only if it is
injective and surjective, that means if and only if ker(A) = {0} and ran(A) = Y . Equivalently,
A is an isomorphism if and only if dim ker(A) = 0 = dim coker(A). Therefore, the invertibility
of A is related to the dimensions of the operator’s kernel and cokernel. Thus, with the
following definition, we can understand a Fredholm operator as being "almost" invertible.

Definition A.18 (Fredholm Operator). We call a bounded linear operator A ∈ L(X,Y )
semifredholm, if ran(A) is closed and either ker(A) or coker(A) is finite-dimensional. If ran(A)
is closed and both, ker(A) and coker(A), are finite-dimensional, we call the operator Fredholm.
We define the index of the operator as

indA = dim ker(A)− dim coker(A). (A.2)

Remark A.19 (On different notations). In some literature, for instance, in [Vai76], the definition
of Fredholm operators is formulated in terms of the codimension rather than the cokernel. For a
subspace U ⊂ V of a vector space V , we define its codimension as

codimU := dim(V/U). (A.3)
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Note, that for finite dimensional vector spaces U ⊂ V , we have that codimU = dimV − dimU .
Consequently, with the notation from above, we have that

dim coker(A) = dim(Y/ ran(A)) = codim ran(A). (A.4)

In the interpretation of Fredholm operators above, we have only considered the dimensions of
the nullspace and the cokernel, whereas the formal definition also requires the range of the
operator to be closed. It turns out that the condition that ran(A) is closed is redundant, as the
following lemma shows.

Lemma A.20. Let A ∈ L(X,Y ) be a bounded linear operator with dim coker(A) < ∞. Then
ran(A) ⊂ Y is a closed subspace.

Proof. See Lemma 4.3.2. in [BS18].

When we are considering discrete approximation schemes, we often only consider finite-
dimensional spaces Xn. In this case, we can apply the following lemma.

Lemma A.21. Let X and Y be finite-dimensional and A ∈ L(X,Y ) be a bounded linear operator.
Then A is Fredholm with index

indA = dimX − dimY. (A.5)

Proof. By the rank theorem from linear algebra we have that

dim ker(A) + dim ran(A) = dimX, (A.6)

and furthermore dim coker(A) = dimY − dim ran(A). Therefore, both ker(A) and ran(A) are
finite dimensional. Hence, A is Fredholm and

indA = dim ker(A)− dim coker(A)

= dimX − dim ran(A)− dimY + dim ran(A)

= dimX − dimY.

The following theorems show that the composition of Fredholm operators is a Fredholm
operator itself and that the perturbation by compact operator preserves Fredholmness.

Theorem A.22. Let A ∈ L(X,Y ) and B ∈ L(Y, Z) be Fredholm operators. Then BA ∈ L(X,Z)
is a Fredholm operator with ind(BA) = ind(A) + ind(B).

Proof. See [GGK90, Section XI.3, Thm. 3.2].

Theorem A.23. Let A ∈ L(X,Y ) be a Fredholm operator and K ∈ L(X,Y ) be compact. Then
A+K is a Fredholm operator with ind(A+K) = ind(A).

Proof. See [BS18, Thm. 4.4.2] or [GGK90, Section XI.3, Lemma 4.2].

Corollary A.24. Let K ∈ L(X,Y ) be compact. Then Id−K is a Fredholm operator with
ind(Id−K) = 0.

Proof. Apply Thm. A.23 with A = Id and note that ind(Id) = 0.

Theorem A.25. An operator A ∈ L(X,Y ) is a Fredholm operator with indA = 0 if and only if
there exists an operator F ∈ L(X,Y ) of finite rank such that A+ F is invertible.
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Proof. We follow the lines of [GGK90, Thm. 5.3, p. 191]. Suppose that A is Fredholm with
indA = 0. We can decompose X = X0 ⊕ kerA and Y = Y0 ⊕ ranA. Since indA = 0, we have
that dim kerA = dimY0, and thus there exists a bijective operator F0 : kerA→ Y0. We define
F = F0(Id−P ), where P is the projection onto kerA. Then F is a finite rank operator and
A+ F is bijective. The other direction follows from Thm. A.23.

Fredholm operators with index zero are useful because it is easier to show that they are
bijective. The following lemma shows that operators of this type are either injective and
surjective or neither.

Lemma A.26. Let A ∈ L(X,Y ) be a Fredholm operator with ind(A) = 0. If A is injective, then
A is also surjective.

Proof. We have that 0 = ind(A) = dim ker(A)− dim coker(A). If A is injective, then ker(A) =
{0} and thus dim coker(A) = 0, which implies that A is surjective.

To close this section, let us come back to the initial motivation of Fredholm operators being
"almost" invertible. This motivation can be considered formally in two different ways. For the
first interpretation, we consider the case X = Y and denote by K(X) ⊂ L(X) the space of
compact operators on X. Then, the quotient space L(X)/K(X) together with the operator
[C][D] = [CD] defines an algebra, called Calkin Algebra. The following theorem allows us to
interpret Fredholm operators as being invertible modulo compact operators.

Theorem A.27 (Atkinson). Let A ∈ L(X). The following are equivalent

(i) A is Fredholm.

(ii) There exists an operator T ∈ L(X) such that Id−TA and Id−AT are compact1.

(iii) [A] has an inverse in the Calkin Algebra L(X)/K(X).

Proof. See [GGK90, Thms. 5.1 and 5.2].

Remark A.28. The first equivalence (i) ⇔ (ii) also holds in the case where X 6= Y with
A, T ∈ L(X,Y ).

For the second interpretation, we say that an operator A ∈ L(X,Y ) has a generalized inverse
Q ∈ L(Y,X) if it holds that

AQA = A and QAQ = Q.

We can show that every Fredhlom operator has such a generalized inverse.

Lemma A.29. Every Fredholm operator has a generalized inverse.

Proof. [GGK90, Cor. 6.2, p. 192]

A.3 Inequalities

This section of the Appendix contains some elementary inequalities that we apply numerous
times in this thesis. Furthermore, we also recall some standard norm estimates from finite
element theory and approximation results.

1can be replaced by the condition that Id−TA and Id−AT are of finite rank.
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A.3.1 Elementary inequalities

In this section, let (V, (·, ·)V ) be a complex Hilbert space and ‖ · ‖V :=
√

(·, ·)V be the norm
induced by the scalar product.

Lemma A.30 (Cauchy-Schwarz inequality). For all v, w ∈ V it holds that

|(v, w)V | ≤ ‖v‖V ‖w‖V . (A.7)

For two non-negative real numbers a, b ∈ R, we have Young’s inequality in the following form.
If p > 1 and q > 1 are such that 1

p + 1
q = 1, then

ab ≤ ap

p
+
bq

q
. (A.8)

In particular, the case p = q = 2 is often applied in the following way: For every ε > 0, ε ∈ R,
we have that

ab ≤ εa2 +
1

4ε
b2. (A.9)

Furthermore, Young’s inequality can also be applied on Hilbert spaces.

Lemma A.31 (Young’s inequality). For every positive real number γ ∈ R, γ > 0, we have that

|(v, w)V | ≤
γ

2
‖v‖2V +

1

2γ
‖w‖2V . (A.10)

There are different version of the Poincaré-inequality, but most often we consider the following
case: Let D ⊂ Rn be a Lipschitz domain. Then, there is a constant C > 0 such that

C‖v‖L2(D) ≤ ‖∇v‖L2(D). (A.11)

The following lemma shows a very general version of the Poincaré-inequality that covers the
most common applications.

Lemma A.32. Let D ⊂ Rn be a Lipschitz domain and p ∈ [1,∞). Furthermore, let f be a
bounded linear form on W 1,p(D) such that the restriction of f to constant functions is not zero.
Then, there exists a constant CPS,p > 0 such that for all v ∈W 1,p(D), we have that

CPS,p‖v‖Lp(D) ≤ diam(D)‖∇v‖Lp(D) + |f(v)|. (A.12)

In particular, we have that

CPS,p‖v‖Lp(D) ≤ diam(D)‖∇v‖Lp(D) ∀v ∈ ker(f). (A.13)

Proof. See [EG21a, Lemma 3.30].

A.3.2 Classical FEM inequalities

In this section, we recall some standard norm estimates from finite element theory.

Lemma A.33 (Discrete trace inequality). For all u ∈ Pk(D) and τ ∈ Th, there exists a constant
Cdt > 0 such that

‖u‖L2(∂τ) ≤ Cdth
−1/2
τ ‖u‖L2(τ). (A.14)

Proof. We refer to [EG21a, Lem. 12.8].

Lemma A.34 (Discrete inverse inequality). For u ∈ Pk(D) and τ ∈ Th, there exists a constant
Cinv > 0 such that

|u|H1(τ) ≤ Cinvh
−1
τ ‖u‖L2(τ).

Proof. We refer to [EG21a, Lem. 12.15].
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A.3.3 Interpolation operators

The following theorem is a classical result about the local interpolation error in finite element
spaces. For more details, we refer to [EG21a, Sec. 11 & 12].

Theorem A.35 (Local interpolation). Let {K̂.P̂ , Σ̂} be a finite element with associated normed
vector space V (K̂) and let 1 ≤ p ≤ ∞. Furthermore, assume that there exists k ∈ N such that

Pk ⊂ P̂ ⊂W k+1,p(K̂) ⊂ V (K̂).

Let IkK be the canonical local interpolation operator and 0 ≤ l ≤ k be such that W 1+l,p(K̂) ⊂
V (K̂), where the embedding is continuous. Then, for allm ∈ {0, . . . , l+1} and all v ∈W 1+l,p(K),
it holds that

|v − IkKv|Wm,p(K) . hl+1−m
K |v|W 1+l,p(K).

Furthermore, for all F ∈ Fn such that F ⊂ ∂K, it holds that

‖v − IkK(v)|Wm,p(F ) . h
r−1/p
K |v|W r,p(K). (A.15)

Proof. We refer to [EG21a, Thm. 11.13] and [EG21a, Rem. 12.17].
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