

Hybrid discontinuous Galerkin discretizations of Galbrun's equation

Martin Halla¹, Christoph Lehrenfeld², Tim van Beeck²

¹ Johann Radon Institute for Computational and Applied Mathematics, Linz ²Institute for Numerical and Applied Mathematics, University of Göttingen

GAMM Workshop on Numerical Analysis, Augsburg, Nov. 15, 2024

Motivation: Helioseismology

• Helioseismology $\hat{=}$ study of the Sun through its *oscillations*

Inverse problem

• Forward problem \rightarrow Galbrun's equation describes time-harmonic waves in the presence of a steady background flow

Galbrun's equation

Find $\mathbf{u}: \mathcal{O} \subset \mathbb{R}^3 \to \mathbb{C}^3$, $\mathbf{v} \cdot \mathbf{u} = 0$ on $\partial \mathcal{O}$, s.t.

$$
-\rho(\omega+i\partial_{\boldsymbol{b}}+i\Omega\times)^{2}\boldsymbol{u}-\nabla(c_{s}^{2}\rho\text{div}\boldsymbol{u})+(\text{div}\,\boldsymbol{u})\nabla p-\nabla(\nabla p\cdot\boldsymbol{u})+(\text{Hess}(p)-\rho\text{Hess}(\phi))\boldsymbol{u}-i\omega\gamma\rho\boldsymbol{u}=\boldsymbol{f}\quad\text{ in }\mathcal{O},
$$

 ρ : density, c_s : sound-speed, ρ : pressure, ϕ : gravitational potential, **b**: background flow, Ω : rotation of the frame, ω : frequency, γ : damping coefficient

Find $u : \mathcal{O} \subset \mathbb{R}^3 \to \mathbb{C}^3$, $v \cdot u = 0$ on $\partial \mathcal{O}$, (assuming that $p = \text{const.}$, $\phi = \text{const.}$) s.t.

$$
-\rho(\omega+i\partial_{\boldsymbol{b}}+i\Omega\times)^2\boldsymbol{u}-\nabla\left(c_s^2\rho\mathrm{div}\boldsymbol{u}\right)-i\omega\gamma\rho\boldsymbol{u}=\boldsymbol{f}\quad\text{ in }\mathcal{O},
$$

 ρ : density, c_s : sound-speed, ρ : pressure, ϕ : gravitational potential, **b**: background flow, Ω : rotation of the frame, ω : frequency, γ : damping coefficient

Challenges

- nonstandard differential operator $\partial_{\boldsymbol{b}} := \sum_{l=1}^d \boldsymbol{b}_l \partial_{x_l}$
- *•* indefinite problem
- highly varying coefficients
- computational expensive (vector valued, ...)

Let *X* be Hilbert, $A \in L(X)$ and $f \in X'$. Then, the problem of finding $u \in X$ s.t. $Au = f$ is well-posed if and only if A^* is injective and the inf-sup condition holds

$$
\inf_{u \in X} \sup_{v \in X} \frac{|\langle Au, v \rangle_X|}{\|u\|_X \|v\|_X} \ge \beta > 0
$$

T-coercivity (Definition & Thm.)¹

We call an operator $A \in L(X)$ *T-coercive* if there exists a bijective operator $T \in L(X)$ s.t. *AT* is coercive, i.e. $\Re{\lbrace \langle ATu, u \rangle_X \rbrace} \ge \alpha ||u||_X^2$ for all $u \in X$. The problem $Au = f$ is well-posed if and only if *A* is T-coercive.

 $A \in L(X)$ is called *weakly T-coercive* if there $\exists T \in L(X)$ bijective and $K \in L(X)$ compact s.t. $AT + K$ is coercive.

 \rightarrow weak T-coercivity \Rightarrow Fredholm with index 0 \Rightarrow well-posedness \Leftrightarrow injectivity

¹see e.g. P.Ciarlet Jr., *T-coercivity: Application to the discretization of Helmholtz-like problems.* CAMWA, 2012.

Abstract tools: (Weak) T-compatibility

For conforming FEM where $X_n \subset X$, $A_n = p_n A|_{X_n} (p_n : X \to X_n$ orthogonal projection), stability is inherited to the discrete level if there exists a sequence of bijective operators $T_n \in L(X_n)$, $n \in \mathbb{N}$, s.t.

$$
\lim_{n\to\infty}||T-T_n||_{L(X)}=0
$$

 \rightarrow non-conforming case? weak T-coercivity?

Setting

X Hilbert space, $(X_n)_{n\in\mathbb{N}}$ sequence of Hilbert spaces s.t. possibly $X_n \not\subset X$. We assume the existences of a family $(p_n)_{n \in \mathbb{N}}$, $p_n : X \to X_n$ s.t.

 $\lim_{n\to\infty}$ $\|p_n u\|_{X_n} = \|u\|_X$.

We write $u_n \stackrel{P}{\to} u$ if $\lim_{n \to \infty} ||p_n u - u_n||_{X_n} = 0$ and for $A_n \in L(X_n)$, $A \in L(X)$, we write $A_n \stackrel{P}{\to} A$ if $\lim_{n \to \infty} ||A_n p_n u - p_n A u||_{X_n}$ for all $u \in X$.

Theorem (Weak T-compatibility²)

Let $A \in L(X)$ be weakly T-coercive & injective; $(A_n)_{n \in \mathbb{N}}$, $A_n \in L(X_n)$, be s.t. $A_n \stackrel{P}{\rightarrow} A$. *If* \exists *uniformly bounded sequences* $(T_n)_{n \in \mathbb{N}}$, $(B_n)_{n \in \mathbb{N}}$, $(K_n)_{n \in \mathbb{N}}$ *s.t.* T_n *and* B_n *are uniformly stable,* $(K_n)_{n\in\mathbb{N}}$ *compact,* $A_nT_n = B_n + K_n$ *and*

$$
\lim_{n\to\infty}||T_n p_n u - p_n T u||_{X_n} = 0, \qquad \lim_{n\to\infty}||B_n p_n u - p_n B u||_{X_n} = 0 \qquad \forall u \in X
$$

Then $(A_n)_{n\in\mathbb{N}}$ *is uniformly stable, i.e.* A_n^{-1} *exists and* $||A_n^{-1}||_{L(X_n)} \leq C$ *for all* $n > n_0$ *.*

²M. Halla, C. Lehrenfeld, P. Stocker, *A new T-compatibility condition and its application to the [discr.] of ... Galbrun's equation*. arXiv, 2022.

Continuous weak formulation

We define
$$
\mathbb{X} := \{ \boldsymbol{u} \in L^2 : \text{div } \boldsymbol{u} \in L^2, \partial_{\boldsymbol{b}} \boldsymbol{u} \in L^2, \boldsymbol{u} \cdot \boldsymbol{\nu} = 0 \text{ on } \partial \mathcal{O} \},
$$

$$
\langle \boldsymbol{u}, \boldsymbol{u}' \rangle_{\mathbb{X}} := \langle \text{div } \boldsymbol{u}, \text{div } \boldsymbol{u}' \rangle + \langle \boldsymbol{u}, \boldsymbol{u}' \rangle + \langle \partial_{\boldsymbol{b}} \boldsymbol{u}, \partial_{\boldsymbol{b}} \boldsymbol{u}' \rangle
$$

Weak formulation Find $u \in \mathbb{X}$ s.t. $\langle Au, u' \rangle_{\mathbb{X}} := a(u, u') = \langle f, u' \rangle$ for all $u' \in \mathbb{X}$, where $a(\bm{u}, \bm{u}') = \langle c_s^2 \rho \text{ div } \bm{u}, \text{div } \bm{u}' \rangle - \langle \rho(\omega + i\partial_{\bm{b}} + i\Omega \times) \bm{u}, (\omega + i\partial_{\bm{b}} + i\Omega \times) \bm{u}' \rangle - i\omega \langle \rho \gamma \bm{u}, \bm{u}' \rangle$ Indefiniteness: if $u \in \text{ker}(\text{div})$ then

$$
\Re{a(\mathbf{u},\mathbf{u})} = -\|\rho^{1/2}(\omega+i\partial_{\mathbf{b}}+i\Omega\times)\mathbf{u}\|_{\mathbf{L}^2}^2 \gtrsim \|\mathbf{u}\|_{\mathbb{X}}^2.
$$

 \rightarrow *a*(\cdot , \cdot) is not coercive!

Goal: Construct $T \in L(\mathbb{X})$ s.t. $a(T, \cdot)$ (+compact) is coercive. Idea: Flip the problematic sign! For $u \in \mathbb{X}$, find $v \in H^2_*$.s.t.

> $div \nabla v = div \mathbf{u}$ in \mathcal{O} , $\nu \cdot \nabla \nu = 0$ on $\partial \mathcal{O}$

and set
$$
\mathbf{v} = \nabla v
$$
, $\mathbf{w} = \mathbf{u} - \mathbf{v}$, $\overline{T} \mathbf{u} := \mathbf{v} - \mathbf{w}$.

 \rightarrow If $u \in \text{ker}(\text{div})$, i.e. $u = w$, then

$$
\Re\{a(T\boldsymbol{u},\boldsymbol{u})\}=\|\rho^{1/2}(\omega+i\partial_{\boldsymbol{b}}+i\Omega\times)\boldsymbol{w}\|_{\boldsymbol{L}^2}^2\gtrsim\|\boldsymbol{u}\|_{\mathbb{X}}^2
$$

 \rightarrow For a stable discretization, we want to transfer this decomposition to the discrete level in a stable manner!

Excerpt from the De Rham complex (2D):

$$
H^{1} \xrightarrow{div} L^{2}.
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
\mathbb{X}_{n} \xrightarrow{div} Q_{n}
$$

Stability of div only for specific choices of \mathbb{X}_n , Q_n

- \rightarrow Scott-Vogelius: $\mathbb{X}_n = [\mathbb{P}^k(\mathcal{T}_n)]^d \cap \mathcal{H}^1$, $Q_n = \mathbb{P}^k(\mathcal{T}_n)$
	- \rightarrow stable for $k > k_0$ with $k_0 = 4$ (2D), $k_0 = 8$ (3D)
	- \rightarrow with special meshes (barycentric refs): $k_0 = 2$ (2D)
- : (*H*(div)-conforming-) DG discretizations less restrictive in *k*

 \rightarrow Stability of Galbrun's equation is connected to the stability of the Stokes problem, e.g. an *H*¹-conforming discretization3

$$
\mathbb{X}_n := \{ \boldsymbol{u}_n \in \boldsymbol{L}^2 : \boldsymbol{u}_n|_{\tau} \in \mathcal{P}^k(\tau) \quad \forall \tau \in \mathcal{T}_n, \boldsymbol{\nu} \cdot \boldsymbol{u}_n = 0 \text{ on } \partial \mathcal{O} \} \cap \boldsymbol{H}^1(\mathcal{O})
$$

- requires $k > 4$ in 2D or barycentric refinement, $k > 6$ for uniform tetrahedral meshes (3D),
- Mach number must be bounded suitably:

$$
\|c_s^{-1}\pmb{b}\|_{\pmb{L}^\infty}^2 \lesssim \beta_\hbar^2 \frac{\min\{c_s^2\rho\}}{\max\{c_s^2\rho\}}
$$

→ Stability and Mach number requirements improved for *H*(div)-conforming DG⁴

³M. Halla, C. Lehrenfeld, P. Stocker, *A new T-compatibility condition and its application to the [discr.] of ... Galbrun's equation*. arXiv, 2022.

⁴M. Halla, *Convergence analysis of nonconform H(div)-finite elements for the damped time-harmonic Galbrun's equation* arXiv, 2023.

Hybrid DG^{5,6}

Idea: introduce additional facet variable to enforce a "good" sparsity pattern & leverage static condensation

Schur complement with $S = A_{\mathcal{T}_n \mathcal{T}_n} - A_{\mathcal{T}_n \mathcal{F}_n} A_{\mathcal{F}_n \mathcal{F}_n}^{-1} A_{\mathcal{F}_n \mathcal{T}_n}$

$$
\begin{pmatrix} A_{\mathcal{T}_n\mathcal{T}_n} & A_{\mathcal{T}_n\mathcal{F}_n} \\ A_{\mathcal{F}_n\mathcal{T}_n} & A_{\mathcal{F}_n\mathcal{F}_n} \end{pmatrix} = \begin{pmatrix} I & A_{\mathcal{T}_n\mathcal{F}_n} A_{\mathcal{F}_n\mathcal{F}_n}^{-1} \\ 0 & I \end{pmatrix} \cdot \begin{pmatrix} S & 0 \\ 0 & A_{\mathcal{F}_n\mathcal{F}_n} \end{pmatrix} \cdot \begin{pmatrix} I & 0 \\ A_{\mathcal{F}_n\mathcal{F}_n}^{-1} A_{\mathcal{T}_n\mathcal{F}_n} & I \end{pmatrix}
$$

5B. Cockburn, J. Gopalakrishnan, R. Lazarov, *Unified hybrdization of [dG] ... for [2nd] order elliptic problems.* SINUM, 2009 6C. Lehrenfeld, *[HDG] Methods for Incompressible Flow Problems*. Diploma thesis, 2010.

Let \mathcal{T}_n be a triangulation of \mathcal{O} and let \mathcal{F}_n be the set of all faces of \mathcal{T}_n . Set $\mathbb{X}_n := \mathbb{X}_{\mathcal{T}_n} \times \mathbb{X}_{\mathcal{F}_n}$ where

•
$$
\mathbb{X}_{\mathcal{T}_n} = \mathbb{P}^k(\mathcal{T}_n), \mathbb{BDM}^k(\mathcal{T}_n), \dots
$$

•
$$
\mathbb{X}_{\mathcal{F}_n} = \mathbb{P}^k(\mathcal{F}_n), \mathbb{P}^{k,\text{tang}}(\mathcal{F}_n), \dots
$$

Notation: $\langle \cdot, \cdot \rangle_{\mathcal{T}_n} := \sum_{\tau \in \mathcal{T}_n} \langle \cdot, \cdot \rangle_{L^2(\tau)}, \langle \cdot, \cdot \rangle_{\mathcal{F}_n} := \dots$

For a tuple $u_n = (u_\tau, u_F) \in \mathbb{X}_n$, we define

$$
\llbracket \underline{\boldsymbol{u}}_n \rrbracket := \boldsymbol{u}_\tau - \boldsymbol{u}_\mathcal{F}, \quad \llbracket \underline{\boldsymbol{u}}_n \rrbracket_\nu = \nu \cdot \llbracket \underline{\boldsymbol{u}}_n \rrbracket, \quad \llbracket \underline{\boldsymbol{u}}_n \rrbracket_{\boldsymbol{b}} = (\boldsymbol{b} \cdot \nu) \llbracket \underline{\boldsymbol{u}}_n \rrbracket
$$

Stabilization & Lifting operators

- symmetric interior penalty: penalty param. α has to be chosen large enough
- \rightarrow problematic for convection term, leads to (further) restrictions in $\Vert c_s^{-1} \mathbf{b} \Vert_{\mathbf{L}^{\infty}}^2$

Lifting operators (Bassi-Rebay stabilization⁷)

For $u_n \in \mathbb{X}_n$, define $R^l u_n \in [\mathbb{P}^l(\mathcal{T}_n)]^d$ and $R^l u_n \in \mathbb{P}^l(\mathcal{T}_n)$ as

$$
\langle \mathbf{R}^l \mathbf{u}_n, \psi_n \rangle_{\mathcal{T}_n} = - \langle [\![\mathbf{u}_n]\!]_\mathbf{b}, \psi_n \rangle_{\partial \mathcal{T}_n} \qquad \forall \psi_n \in [\![\mathbb{P}^l(\mathcal{T}_n)\!]^d,
$$

$$
\langle R^l \mathbf{u}_n, \psi_n \rangle_{\mathcal{T}_n} = - \langle [\![\mathbf{u}_n]\!]_\nu, \psi_n \rangle_{\partial \mathcal{T}_n} \qquad \forall \psi_n \in [\![\mathbb{P}^l(\mathcal{T}_n)\!]
$$

Define the discrete differential operators elementwise for $\tau \in \mathcal{T}_n$

$$
(\boldsymbol{D}_{\boldsymbol{b}}^n \boldsymbol{u}_n)|_{\tau} := \partial_{\boldsymbol{b}}(\boldsymbol{u}_n)|_{\tau} + \boldsymbol{R}^l \boldsymbol{u}_n|_{\tau}
$$

$$
(\text{div}_{\boldsymbol{\nu}}^n \boldsymbol{u}_n)|_{\tau} := \text{div}(\boldsymbol{u}_n)|_{\tau} + \boldsymbol{R}^l \boldsymbol{u}_n|_{\tau}
$$

⁷F. Bassi, S. Rebay, *A high-order accurate [disc. FEM] for the numerical [sol.] of the compressible Navier–Stokes [eqs.].* Journal of Comp. Physics, 1997.

Discrete weak formulation

For $u_n, u'_n \in \mathbb{X}_n$, we define the scalar product (and associated norm $\|\cdot\|_{\mathbb{X}_n}^2 := \langle \cdot, \cdot \rangle_{\mathbb{X}_n}$) $\langle u_n, u'_n \rangle_{\mathbb{X}_n} := \langle \text{div}_{\nu}^n u_n, \text{div}_{\nu}^n u'_n \rangle_{\mathcal{T}_n} + \langle u_n, u'_n \rangle_{\mathcal{T}_n} + \langle D_{\bm{b}}^n u_n, D_{\bm{b}}^n u'_n \rangle_{\mathcal{T}_n} + \langle h_\tau^{-1} [\![u_n]\!]_{\nu}, [\![u'_n]\!]_{\nu} \rangle_{\partial \mathcal{T}_n}.$

Discrete weak formulation

Find $u_n \in \mathbb{X}_n$ s.t. $\langle A_n u_n, u'_n \rangle_{\mathbb{X}_n} := a_n(u_n, u'_n) = \langle f, u'_n \rangle$ for all $u'_n \in \mathbb{X}_n$, where

$$
a_n(\boldsymbol{u}_n, \boldsymbol{u}'_n) := \langle c_s^2 \rho \operatorname{div}_{\boldsymbol{\nu}}^n \boldsymbol{u}_n, \operatorname{div}_{\boldsymbol{\nu}}^n \boldsymbol{u}'_n \rangle_{\mathcal{T}_n} - \langle \rho(\omega + i\boldsymbol{D}_{\boldsymbol{b}}^n + i\Omega \times) \boldsymbol{u}_n, (\omega + i\boldsymbol{D}_{\boldsymbol{b}}^n + i\Omega \times) \boldsymbol{u}'_n \rangle_{\mathcal{T}_n} - i\omega \langle \gamma \rho \boldsymbol{u}_n, \boldsymbol{u}'_n \rangle_{\mathcal{T}_n} + s_n(\boldsymbol{u}_n, \boldsymbol{u}'_n)
$$

and

$$
s_n(\boldsymbol{u}_n, \boldsymbol{u}'_n) := \langle c_s^2 \rho \frac{\alpha}{h_\tau} [\![\underline{\boldsymbol{u}}_n]\!]_\nu, [\![\underline{\boldsymbol{u}}'_n]\!]_\nu \rangle_{\partial \mathcal{T}_n} - \langle c_s^2 \rho R^l \boldsymbol{u}_n, R^l \boldsymbol{u}_n \rangle_{\mathcal{T}_n}
$$

 \rightarrow BR for convection term, SIP for diffusion term! \rightarrow divⁿ only introduced for (convenient) notation

Goal: construct decomposition $\mathbb{X}_n \ni u_n = v_n + w_n$ and set $T_n u_n := v_n - w_n$ s.t.

$$
\operatorname{div}_{\boldsymbol{\nu}}^n \boldsymbol{v}_n = \operatorname{div}_{\boldsymbol{\nu}}^n \boldsymbol{u}_n, \quad [\![\boldsymbol{v}_n]\!]_{\boldsymbol{\nu}} = 0, \quad ||\boldsymbol{v}_n||_{\mathbb{X}_n} \leq C ||\boldsymbol{u}_n||_{\mathbb{X}_n}
$$

Helmholtz decomposition on the discrete level For $u_n \in \mathbb{X}_n$, find $\tilde{v} \in H^2_*$ s.t. $div \nabla \tilde{v} = div_{\nu}^{n} u_{n}$ in $\mathcal{O},$ $\nu \cdot \nabla \tilde{v} = 0$ on $\partial \mathcal{O}$

 \rightarrow next step: project $\nabla \tilde{v}$ into \mathbb{X}_n

Construction of *Tⁿ*

For $s > 1/2$, let $\pi_n^d : H^s \to [\mathbb{P}^k(\mathcal{T}_n)]^d \cap H(\text{div})$ be an $H(\text{div})$ -conforming interpolation operator. We extend the operator to the HDG setting:

$$
\underline{\pi_n^d} \mathbf{u} := (\pi_n^d \mathbf{u}, P_{\nu} \pi_n^d \mathbf{u} + P_{\nu}^{\perp} \pi_n^F \mathbf{u}),
$$

where

- P_{ν} / P_{ν}^{\perp} is the normal / tangential projection on a facet $F \in \mathcal{F}_n$,
- π_n^F is the *L*²-orthogonal projection on the facet.

Definition of *Tⁿ*

For $u_n \in \mathbb{X}_n$, we set $v_n := \frac{\pi_n^d}{\nabla \tilde{v}}$, $w_n := u_n - v_n$ and $T_n u_n := v_n - w_n$. It holds

•
$$
\llbracket \mathbf{v}_n \rrbracket_{\nu} = \pi_n^d \nabla \tilde{\mathbf{v}} \cdot \boldsymbol{\nu} - \pi_n^d \nabla \tilde{\mathbf{v}} \cdot \boldsymbol{\nu} = 0 \ \checkmark
$$

- div_{*v*}^{*n*} $\mathbf{v}_n = \text{div } \pi_n^d \nabla \tilde{v} = \pi_n^l \text{div } \tilde{v} = \text{div}_{\mathbf{v}}^n \mathbf{u}_n$
- $\|\mathbf{v}_n\|_{\mathbb{X}_n} \leq C \|\mathbf{u}_n\|_{\mathbb{X}_n} \sqrt{n}$

Can show that $\exists (p_n)_{n \in \mathbb{N}}, p_n \in L(\mathbb{X}_n)$, s.t. $\lim_{n \to \infty} ||p_n u||_{\mathbb{X}_n} = ||u||_{\mathbb{X}}$ & $A_n \stackrel{P}{\to} A$. Furthermore, $(T_n)_{n \in \mathbb{N}}$ is stable and $T_n \stackrel{P}{\rightarrow} T$.

Theorem

Assume that $\|c_{\pmb{s}}^{-1}\pmb{b}\|_{\pmb{L}^\infty}^2 \lesssim 1$ and $\alpha > 0$ is large enough. Then, \exists $(B_n)_{n\in \mathbb{N}},$ $(K_n)_{n\in \mathbb{N}}$ s.t. $(B_n)_{n \in \mathbb{N}}$ is uniformly coercive, $(K_n)_{n \in \mathbb{N}}$ is compact, $B_n \stackrel{P}{\to} B$ and $A_n T_n = B_n + K_n$.

Corollary

Under the assumptions from above, $\exists n_0 > 0$ *s.t. the discrete problem has a unique solution for all* $n > n_0$ *. If* $u \in \mathbb{X} \cap H^{s+2}$, $s > 0$, $\rho \in W^{1,\infty}$, and $b \in W^{1,\infty}$, then

$$
d_n(\boldsymbol{u},\boldsymbol{u}_n)\leq C\left(h^{\min\{1+s,k\}}+h^{\min\{k,l+1\}}\right)\|\boldsymbol{u}\|_{\boldsymbol{H}^{s+2}}.
$$

Numerical examples

- \rightarrow $\mathbb{X}_{\mathcal{T}_n}$ and $\mathbb{X}_{\mathcal{F}_n}$ not specified before
- \rightarrow different options to optimize the computational efficiency

⁸C. Lehrenfeld, J. Schöberl. *High order exactly [div.-free HDG] methods for unsteady [incompr.] flows.* Comput. Methods Appl. Mech. Eng., 2016. $\frac{9}{2}$ similar to the *projected jumps* modification⁶

^{)&}lt;br>P. L. Lederer, C. Lehrenfeld, J. Schöberl. *[HDG] methods with relaxed H(div)-conformity for incompressible flows. Part I. SIAM J. Numer. Anal., 2018.*

Numerical examples: Sun coefficients

 $\rightarrow c_s$, ρ , p taken from models¹¹, $\omega = 0.003 \cdot 2\pi \cdot R_{\text{sun}}$, $\gamma = \omega/100$, $\Omega = (0,0)^T$, rhs $\mathbf{f} = 10^7 \cdot (g, 0)^T$ & flow $\mathbf{b} = c_s / R_{\text{sun}} \cdot c_{\mathbf{b}} \cdot (-y, x)^T$.

¹¹J. Christensen-Dalsgaard et al., *The current state of solar modeling.* Science, 1996.

Conclusions

- *•* Stability of Galbrun's equation related to the stability of the Stokes problem;
- *•* (H)DG discretization is stable for *k* 1, bound on Mach number less restrictive than H^1 -conforming discretization
	- \rightarrow Analysis through (weak) T-coercivity / T-compatibility arguments;
	- \rightarrow can be extended to the full equation by adjusting the Helmholtz decomposition

$$
(\text{div} + P_{L_0^2} \mathbf{q} \cdot + M) \nabla \tilde{v} = (\text{div}_{\mathbf{\nu}}^n + \pi_n^l \mathbf{q} \cdot + M_n) \mathbf{u}_n.
$$

- Hybridization reduces computational effort;
- Method is robust w.r.t. to (drastic) changes in the coefficients!

Thank you for your attention!