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Motivation: Helioseismology

• Helioseismology b= study of the Sun through its oscillations

Forward problem

Inverse problem

• Forward problem: Galbrun’s equation describes time-harmonic waves in the
presence of a steady background flow

1/19



Galbrun’s equation

Find u : O ⇢ R3
! C3, ⌫ · u = 0 on @O, s.t.

�⇢(! + i@b + i⌦⇥)
2
u�r

�
c

2
s ⇢divu

�
+ (div u)rp �r(rp · u)

+ (Hess(p)� ⇢Hess(�))u � i!�⇢u = f in O,

⇢: density, cs : sound-speed, p: pressure, �: gravitational potential, b: background flow, ⌦: rotation of
the frame, !: frequency, �: damping coe�cient

Challenges

• nonstandard di�erential operator
@b :=

Pd
l=1 bl@xl

• indefinite problem
• highly varying coe�cients
• computational expensive (vector valued, ...)
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Galbrun’s equation

Find u : O ⇢ R3
! C3, ⌫ · u = 0 on @O, (assuming that p = const., � = const.) s.t.

�⇢(! + i@b + i⌦⇥)
2
u�r

�
c

2
s ⇢divu

�
� i!�⇢u = f in O,

⇢: density, cs : sound-speed, p: pressure, �: gravitational potential, b: background flow, ⌦: rotation of
the frame, !: frequency, �: damping coe�cient

Challenges
• nonstandard di�erential operator
@b :=

Pd
l=1 bl@xl

• indefinite problem
• highly varying coe�cients
• computational expensive (vector valued, ...)
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Abstract tools: (weak) T-coercivity

Let X be Hilbert, A 2 L(X ) and f 2 X
0. Then, the problem of finding u 2 X s.t.

Au = f is well-posed if and only if A⇤ is injective and the inf-sup condition holds

inf
u2X

sup

v2X

|hAu, viX |

kukXkvkX
� � > 0

T-coercivity (Definition & Thm.)1

We call an operator A 2 L(X ) T-coercive if there exists a bijective operator T 2 L(X )

s.t. AT is coercive, i.e. <{hATu, uiX} � ↵kuk2
X for all u 2 X .

The problem Au = f is well-posed if and only if A is T-coercive.

A 2 L(X ) is called weakly T-coercive if there 9 T 2 L(X ) bijective and K 2 L(X )

compact s.t. AT + K is coercive.
: weak T-coercivity ) Fredholm with index 0 ) well-posedness , injectivity

1
see e.g. P.Ciarlet Jr., T-coercivity: Application to the discretization of Helmholtz-like problems. CAMWA, 2012.
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Abstract tools: (Weak) T-compatibility

For conforming FEM where Xn ⇢ X , An = pnA|Xn (pn : X ! Xn orthogonal
projection), stability is inherited to the discrete level if there exists a sequence of
bijective operators Tn 2 L(Xn), n 2 N, s.t.

lim
n!1

kT � TnkL(X ) = 0

: non-conforming case? weak T-coercivity?

Setting
X Hilbert space, (Xn)n2N sequence of Hilbert spaces s.t. possibly Xn 6⇢ X .
We assume the existences of a family (pn)n2N, pn : X ! Xn s.t.

lim
n!1

kpnukXn = kukX .

We write un
P
! u if limn!1 kpnu � unkXn = 0 and for An 2 L(Xn), A 2 L(X ), we

write An
P
! A if limn!1 kAnpnu � pnAukXn for all u 2 X .
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Abstract tools: (Weak) T-compatibility

Theorem (Weak T-compatibility2)

Let A 2 L(X ) be weakly T-coercive & injective; (An)n2N, An 2 L(Xn), be s.t. An
P
! A.

If 9 uniformly bounded sequences (Tn)n2N, (Bn)n2N, (Kn)n2N s.t. Tn and Bn are
uniformly stable, (Kn)n2N compact, AnTn = Bn + Kn and

lim
n!1

kTnpnu � pnTukXn = 0, lim
n!1

kBnpnu � pnBukXn = 0 8u 2 X

Then (An)n2N is uniformly stable, i.e. A�1
n exists and kA

�1
n kL(Xn)  C for all n > n0.

X A T = B + K

Xn An Tn = Bn + Kn

pn P! P! P!

: transfer (weakly T-coercive) structure to the discrete level in a stable manner
2
M. Halla, C. Lehrenfeld, P. Stocker, A new T-compatibility condition and its application to the [discr.] of ... Galbrun’s equation. arXiv, 2022.
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Continuous weak formulation

We define X := {u 2 L
2
: div u 2 L

2, @bu 2 L
2,u · ⌫ = 0 on @O},

hu,u 0
iX := hdiv u, div u

0
i+ hu,u 0

i+ h@bu, @bu
0
i

Weak formulation
Find u 2 X s.t. hAu,u 0

iX := a(u,u 0
) = hf ,u 0

i for all u 0
2 X, where

a(u,u 0
) = hc

2
s ⇢ div u, div u

0
i � h⇢(! + i@b + i⌦⇥)u, (! + i@b + i⌦⇥)u

0
i � i!h⇢�u,u 0

i

Indefiniteness: if u 2 ker(div) then

<{a(u,u)} = � k⇢1/2
(! + i@b + i⌦⇥)uk

2
L

2 6& kuk
2
X.

: a(·, ·) is not coercive!

6/19



Construction of T

Goal: Construct T 2 L(X) s.t. a(T ·, ·) (+compact) is coercive.
Idea: Flip the problematic sign! For u 2 X, find v 2 H

2
⇤ .s.t.

divrv = div u in O,

⌫ ·rv = 0 on @O

and set v = rv , w = u � v , Tu := v � w .

: If u 2 ker(div), i.e. u = w , then

<{a(Tu,u)} = k⇢1/2
(! + i@b + i⌦⇥)wk

2
L

2 & kuk
2
X

: For a stable discretization, we want to transfer this de-
composition to the discrete level in a stable manner!

X

V
curl = 0

W
div = 0
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Interlude: Stability of the Stokes complex

Excerpt from the De Rham complex (2D):

H
1

L
2.

Xn Qn

div

div

Stability of div only for specific choices of Xn,Qn

: Scott-Vogelius: Xn = [Pk
(Tn)]

d
\ H

1, Qn = Pk
(Tn)

: stable for k � k0 with k0 = 4 (2D), k0 = 8 (3D)
: with special meshes (barycentric refs): k0 = 2 (2D)

: (H(div)-conforming-) DG discretizations less restrictive in k
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Discretizations of Galbrun’s equation

: Stability of Galbrun’s equation is connected to the stability of the Stokes
problem, e.g. an H

1-conforming discretization3

Xn := {un 2 L
2
: un|⌧ 2 P

k
(⌧) 8⌧ 2 Tn,⌫ · un = 0 on @O} \ H

1
(O)

• requires k � 4 in 2D or barycentric refinement, k � 6 for uniform tetrahedral
meshes (3D),

• Mach number must be bounded suitably:

kc
�1
s bk

2
L
1 . �2

h
min{c

2
s ⇢}

max{c2
s ⇢}

: Stability and Mach number requirements improved for H(div)-conforming DG4

3
M. Halla, C. Lehrenfeld, P. Stocker, A new T-compatibility condition and its application to the [discr.] of ... Galbrun’s equation. arXiv, 2022.

4
M. Halla, Convergence analysis of nonconform H(div)-finite elements for the damped time-harmonic Galbrun’s equation arXiv, 2023.
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Hybrid DG5,6

Idea: introduce additional facet variable to enforce a
"good" sparsity pattern & leverage static condensation

DG HDG

DG

HDG

Schur complement with S = ATnTn � ATnFnA
�1
FnFn

AFnTn
✓
ATnTn ATnFn

AFnTn AFnFn

◆
=

✓
I ATnFnA

�1
FnFn

0 I

◆
·

✓
S 0
0 AFnFn

◆
·

✓
I 0

A
�1
FnFn

ATnFn I

◆

5
B. Cockburn, J. Gopalakrishnan, R. Lazarov, Unified hybrdization of [dG] ... for [2nd] order elliptic problems. SINUM, 2009

6
C. Lehrenfeld, [HDG] Methods for Incompressible Flow Problems. Diploma thesis, 2010.
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Hybrid DG discretization

Let Tn be a triangulation of O and let Fn be the set of
all faces of Tn. Set Xn := XTn ⇥ XFn where

• XTn = Pk
(Tn),BDMk

(Tn), . . .

• XFn = Pk
(Fn),Pk,tang

(Fn), . . .

Notation: h·, ·iTn :=
P

⌧2Tnh·, ·iL2(⌧), h·, ·iFn := . . .

For a tuple un = (u⌧ ,uF ) 2 Xn, we define

JunK := u⌧ � uF , JunK⌫ = ⌫ · JunK, JunKb = (b · ⌫)JunK
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Stabilization & Lifting operators

• symmetric interior penalty: penalty param. ↵ has to be chosen large enough
: problematic for convection term, leads to (further) restrictions in kc

�1
s bk

2
L
1

Lifting operators (Bassi-Rebay stabilization7)

For un 2 Xn, define R
l
un 2 [Pl

(Tn)]
d and R

l
un 2 Pl

(Tn) as

hR
l
un, niTn = �hJunKb, ni@Tn 8 n 2 [Pl

(Tn)]
d ,

hR
l
un, niTn = �hJunK⌫ , ni@Tn 8 n 2 Pl

(Tn).

Define the discrete di�erential operators elementwise for ⌧ 2 Tn

(D
n
b
un) |⌧ := @b(un)|⌧ + R

l
un|⌧

(div
n
⌫ un) |⌧ := div(un)|⌧ + R

l
un|⌧

7
F. Bassi, S. Rebay, A high-order accurate [disc. FEM] for the numerical [sol.] of the compressible Navier–Stokes [eqs.]. Journal of Comp. Physics, 1997.
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Discrete weak formulation

For un,u 0
n 2 Xn, we define the scalar product (and associated norm k · k

2
Xn

:= h·, ·iXn)

hun,u
0
niXn := hdiv

n
⌫ un, div

n
⌫ u

0
niTn+hun,u

0
niTn+hD

n
b
un,D

n
b
u
0
niTn+hh

�1
⌧ JunK⌫ , Ju 0

nK⌫i@Tn .

Discrete weak formulation
Find un 2 Xn s.t. hAnun,u 0

niXn := an(un,u 0
n) = hf ,u 0

ni for all u 0
n 2 Xn, where

an(un,u
0
n) :=hc

2
s ⇢ div

n
⌫ un, div

n
⌫ u

0
niTn � h⇢(! + iD

n
b
+ i⌦⇥)un, (! + iD

n
b
+ i⌦⇥)u

0
niTn

� i!h�⇢un,u
0
niTn + sn(un,u

0
n)

and
sn(un,u

0
n) :=hc

2
s ⇢

↵

h⌧
JunK⌫ , Ju 0

nK⌫i@Tn � hc
2
s ⇢R

l
un,R

l
uniTn

: BR for convection term, SIP for di�usion term!

: div
n
⌫ only introduced for (convenient) notation
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Construction of Tn

Goal: construct decomposition Xn 3 un = vn +wn and
set Tnun := vn � wn s.t.

div
n
⌫ vn = div

n
⌫ un, JvnK⌫ = 0, kvnkXn  CkunkXn

Xn

Vn

curl = 0
J·K⌫ = 0

Wn

divn⌫ = 0

Helmholtz decomposition on the discrete level
For un 2 Xn, find ṽ 2 H

2
⇤ s.t.

divrṽ = div
n
⌫ un in O,

⌫ ·rṽ = 0 on @O

: next step: project rṽ into Xn
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Construction of Tn

For s > 1/2, let ⇡dn : H
s
! [Pk

(Tn)]
d
\H(div) be an H(div)-conforming interpolation

operator. We extend the operator to the HDG setting:

⇡dnu := (⇡dnu,P⌫⇡
d
nu + P

?
⌫ ⇡

F
n u),

where
• P⌫ / P

?
⌫ is the normal / tangential projection on a facet F 2 Fn,

• ⇡Fn is the L
2-orthogonal projection on the facet.

Definition of Tn

For un 2 Xn, we set vn := ⇡dnrṽ , wn := un � vn and Tnun := vn � wn. It holds

• JvnK⌫ = ⇡dnrṽ · ⌫ � ⇡dnrṽ · ⌫ = 0 X
• div

n
⌫ vn = div ⇡dnrṽ = ⇡ln div ṽ = div

n
⌫ un X

• kvnkXn  CkunkXn X
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Convergence results

Can show that 9 (pn)n2N, pn 2 L(Xn), s.t. limn!1 kpnukXn = kukX & An
P
! A.

Furthermore, (Tn)n2N is stable and Tn
P
! T .

Theorem
Assume that kc�1

s bk
2
L
1 . 1 and ↵ > 0 is large enough. Then, 9 (Bn)n2N, (Kn)n2N s.t.

(Bn)n2N is uniformly coercive, (Kn)n2N is compact, Bn
P
! B and AnTn = Bn + Kn.

Corollary
Under the assumptions from above, 9n0 > 0 s.t. the discrete problem has a unique
solution for all n > n0. If u 2 X \ H

s+2, s > 0, ⇢ 2 W
1,1, and b 2 W

1,1, then

dn(u,un)  C

⇣
h
min{1+s,k}

+ h
min{k,l+1}

⌘
kuk

H
s+2 .
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Numerical examples

: XTn and XFn not specified before

: di�erent options to optimize the
computational e�ciency

HDG method discrete spaces associated costs

XTn XFn lifting ndofs ncdofs nze

full [Pk
(Tn)]

d
[Pk

(Fn)]
d

[Pk
(Tn)]

d 124 20 784
H(div)

8 BDMk
(Tn) [Pk,tang

(Fn)]
d

[Pk
(Tn)]

d 88 20 784
red. H(div)

9 BDMk
(Tn) [Pk�1,tang

(Fn)]
d

[Pk�1
(Tn)]

d 51 15 441
optimized10 BDM�

k (Tn) [Pk�1,tang
(Fn)]

d
[Pk�1

(Tn)]
d 56 10 308

0 1 2 3 4

10�6

10�4

10�2

100

refinement level L

k = 4

H(div)-HDG
red. H(div)-HDG

full HDG
opt. HDG

8
C. Lehrenfeld, J. Schöberl. High order exactly [div.-free HDG] methods for unsteady [incompr.] flows. Comput. Methods Appl. Mech. Eng., 2016.

9
similar to the projected jumps modification6

10
P. L. Lederer, C. Lehrenfeld, J. Schöberl. [HDG] methods with relaxed H(div)-conformity for incompressible flows. Part I. SIAM J. Numer. Anal., 2018.
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Numerical examples: Sun coe�cients

: cs , ⇢, p taken from modelS11, ! = 0.003 · 2⇡ · Rsun, � = !/100, ⌦ = (0, 0)T ,
rhs f = 107

· (g , 0)T & flow b = cs/Rsun · cb · (�y , x)T .

kc�1
s bk2

L1 ⇡ 0.05 kc�1
s bk2

L1 ⇡ 1.00

11
J. Christensen-Dalsgaard et al., The current state of solar modeling. Science, 1996.
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Conclusions

• Stability of Galbrun’s equation related to the stability of the Stokes problem;
• (H)DG discretization is stable for k � 1, bound on Mach number less restrictive
than H

1-conforming discretization
: Analysis through (weak) T-coercivity / T-compatibility arguments;
: can be extended to the full equation by adjusting the Helmholtz decomposition

(div +PL2
0
q ·+M)rṽ = (div

n
⌫ +⇡l

nq ·+Mn)un.

• Hybridization reduces computational e�ort;
• Method is robust w.r.t. to (drastic) changes in the coe�cients!

Thank you for your attention!
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