

Analysis and approximation of the nematic Helmholtz–Korteweg equation

Patrick E. Farrell¹, Tim van Beeck², Umberto Zerbinati¹

¹University of Oxford; ²University of Göttingen

Applied Mathematics Seminar, Pavia, Dec. 10th, 2024

Introduction

- *•* Goal: describe time-harmonic acoustic wave propagation in a nematic liquid crystal
- Korteweg-fluid: $\underline{\sigma} = p\underline{l} u_1\rho(\nabla\rho \otimes \nabla\rho)$
- *•* nematic LC can be considered as a Korteweg-fluid:

$$
\underline{\underline{\sigma}} = p\underline{\underline{I}} - u_1 \rho (\nabla \rho \otimes \nabla \rho) - u_2 (\nabla \rho \cdot \mathbf{n}) \nabla \rho \otimes \mathbf{n}
$$

- \rightarrow time harmonic acoustic waves described by the nematic Helmholtz–Korteweg equations!
- \rightarrow how does the alignment of the nematic field influence the propagation of the acoustic wave?

W. Wang, L. Zhang, P. Zhang, *Modelling and computation of liquid crystals.* Acta Numerica, 2021.

Nematic Helmholtz–Korteweg equation¹

Given
$$
f \in L^2(\Omega)
$$
, find $u : \Omega \to \mathbb{C}$ s.t.
\n
$$
\alpha \Delta^2 u + \beta \nabla \cdot \nabla (\mathbf{n}^T (\mathcal{H}u) \mathbf{n}) - \Delta u - k^2 u = f \qquad \text{in } \Omega,
$$
\n
$$
\mathcal{B}u = (0,0) \quad \text{on } \partial \Omega.
$$

•
$$
\Omega \subset \mathbb{R}^d
$$
, $d = 2, 3$, bounded Lipschitz domain;

- α , β : constitution parameters;
- *• H*: Hessian;
- *n*: orientation of the nematic field ($||n|| = 1$);
- $k = \omega/c$: (classic) wave-number;
- *• B*: encodes the boundary conditions;

¹P.E. Farrell, U. Zerbinati, *Time-harmonic waves in Korteweg and nematic-Korteweg fluids.* arXiv, 2024.

Boundary conditions²

 \rightarrow 4th-order PDE, so we need two boundary conditions 1. *sound soft:*

$$
\mathcal{B}u := (u, \Delta u + \frac{\beta}{\alpha} \boldsymbol{n}^{\mathsf{T}}(\mathcal{H}u)\boldsymbol{n})
$$

2. *sound hard:*

$$
\mathcal{B}u := (\partial_{\boldsymbol{\nu}}u, \partial_{\boldsymbol{\nu}}\Delta u + \frac{\beta}{\alpha}\partial_{\boldsymbol{\nu}}(\boldsymbol{n}^{\mathsf{T}}(\mathcal{H}u)\boldsymbol{n}))
$$

3. *impedance:*

$$
\mathcal{B}u := (\partial_{\nu}u - i\theta u, \partial_{\nu}\Delta u - i\theta(\frac{\beta}{\alpha}\mathbf{n}^{\mathsf{T}}(\mathcal{H}u)\mathbf{n} - \frac{\beta}{\alpha}\partial_{\nu}(\mathbf{n}^{\mathsf{T}}(\mathcal{H}u)\mathbf{n})))
$$

 \rightarrow our analysis covers all cases!

²P.E. Farrell, U. Zerbinati, *Time-harmonic waves in Korteweg and nematic-Korteweg fluids.* arXiv, 2024.

[Abstract framework](#page-4-0)

Well-posedness

Let *X* be a Hilbert space, $a: X \times X \rightarrow \mathbb{C}$ be a bounded sesquilinear form & $A \in L(X, X')$ be the associated operator: $\langle Au, v \rangle_{X',X} = a(u, v) \ \forall u, v \in X$. \rightarrow find $u \in X$ s.t. $Au = f$ in X' is well-posed \Leftrightarrow *A* is a bounded isomorphism \Leftrightarrow *A* is injective & ran(*A*) is closed & *A*^{*} injective $\Leftrightarrow \exists \alpha > 0 \text{ s.t. } ||Au||_{X} \ge \alpha ||u||_X \text{ for all } u \in X \& A^* \text{ injective}$ \Leftrightarrow inf sup
u∈*X* _{v∈}*X* $|\langle Au, v \rangle_{X',X}|$ $\frac{\partial}{\|u\|_X \|v\|_X} \ge \alpha > 0$ & *A*^{*} injective $\frac{3}{\text{inf-sup condition}^3}$

Theorem (Lax-Milgram)

A is coercive, i.e. $\exists \alpha > 0$ s.t. $\Re{\{\langle Au, u \rangle_{X',X}\}} \geq ||u||_X^2 \Rightarrow A$ is a bounded isomorphism

³F. Brezzi, *On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers.*, R.A.I.R.O., 1974.

Simple observation: *A* bijective \Leftrightarrow \exists *T* bijective s.t. *AT* is coercive

Definition (T-coercivity⁴)

We call $A \in L(X, X')$ *T-coercive* if there exists a bijective operator $T \in L(X)$ s.t. $AT \in L(X, X')$ is coercive, i.e.

$$
\Re{\{\langle ATu, u\rangle_{X',X}\}} \ge \alpha \|u\|_X^2
$$

- \rightarrow T-coercivity equivalent to well-posedness (necessary & sufficient)
- \rightarrow recover coercivity with $T = Id$
- \rightarrow not directly inherited to the discrete level

⁴e.g. P. Ciarlet Jr., *T-coercivity: Application to the discretization of Helmholtz-like problems*. CAMWA, 2012.

Construction of *T* – Example

For given $k \gg 0$, $f \in L^2(\Omega)$, find $u \in X$ s.t. $a(u, v) := e(u, v) - k^2(u, v)_{1^2(\Omega)} = (f, v)_{1^2(\Omega)} \quad \forall v \in X,$ (P)

 $\rightarrow \{\lambda^{(i)}, e^{(i)}\}_{i \in \mathbb{N}}$ eigenpairs associated with $e(\cdot, \cdot)$, $i_* \in \mathbb{N}$ s.t. $\lambda^{(i_*)} < k^2 < \lambda^{(i_*+1)}$ \rightarrow construct $T \in L(X)$ bijective, s.t.

$$
Te^{(i)} = \begin{cases} -e^{(i)} & \text{if } i \leq i_*; \\ +e^{(i)} & \text{if } i > i_*. \end{cases}
$$

 \rightarrow can show coercivity of *a*($T \cdot$, \cdot) since

$$
a(Te^{(i)},e^{(i)})=\begin{cases}k^2-\lambda^{(i)}&\text{if }i\leq i_*\\ \lambda^{(i)}-k^2&\text{if }i>i_*\end{cases}>0.
$$

 \rightarrow what about boundary terms?

Definition (Compact operator)

We call an operator $K \in L(X, Y)$ *compact* if \forall bounded $(u_n)_{n \in \mathbb{N}} \subset X$, the sequence $(Ku_n)_{n\in\mathbb{N}} \subset Y$ has a convergent subsequence.

Definition (Weak T-coercivity⁵)

 $A \in L(X, X')$ is called *weakly T-coercive* if there $\exists \tau \in L(X)$ bijective, $K \in L(X, X')$ compact s.t. $AT + K$ is coercive.

- \rightarrow i.e. $AT = bi\hat{i}$. + comp., so AT is Fredholm with index zero!
- → if *A* is weakly T-coercive and injective, then *A* is bijective

⁵see e.g., M. Halla, *Galerkin approximation of holomorphic eigenvalue problems: weak T-coercivity and T-compatibility.* Numerische Mathematik, 2021.

 \rightarrow (weak) T-coercivity not inherited to the discrete level!

Definition (Uniform T*h*-coercivity)

Let $\{X_h\}_h \subset X$ be a seq. of discrete spaces. We call *A* uniformly T_h -coercive on ${X_h}_{h}$ if there exists a family of bijective operators ${T_h}_{h}$, $T_h \in L(X_h)$ and α_* independent of *h* s.t.

$$
\Re\{(AT_hu_h, u_h)_{X_h}\}\geq \alpha_*\|u_h\|_X^2,
$$

Theorem

Let $A \in L(X)$ *be injective and* $A = B + K$ *, where* $B \in L(X)$ *is bijective and* $K \in L(X)$ *compact. If B* is uniformly T_h -coercive on $\{X_h\}_h \subset X$, then there exists $h_0 > 0$ s.t. A is *uniformly T_h*-coercive on $\{X_h\}_h$ for $h \leq h_0$.

[Continuous problem](#page-10-0)

Weak formulation

We want to find $u \in X$ s.t.

$$
a(u, v) = (f, v)_{L^2(\Omega)} \qquad \forall v \in X,
$$
 (CP)

where

$$
a(u, v) := \underbrace{\alpha(\Delta u, \Delta v)_{L^2(\Omega)} + \beta(\mathbf{n}^T(\mathcal{H}u)\mathbf{n}, \Delta v)_{L^2(\Omega)} + (\nabla u, \nabla v)_{L^2(\Omega)}}_{=:e(u,v)} -k^2(u, v)_{L^2(\Omega)} + \langle Ku, v \rangle_{X',X}
$$

- \rightarrow *K* \in *L*(*X, X'*) encodes the boundary conditions
- → choice of *X* depends on BCs: $sound~soft: X = H_0^2(\Omega) := H^2(\Omega) \cap H_0^1(\Omega),$ *sound hard & impedance:* $X = H^2(\Omega)$

- *sound soft*: $K := 0$
- *• sound hard*:

$$
\langle Ku, v \rangle_{X',X} := -\alpha (\Delta u, \nabla v \cdot \boldsymbol{\nu})_{L^2(\partial \Omega)} + \beta (\boldsymbol{n}^T (\mathcal{H}u) \boldsymbol{n}, \nabla v \cdot \boldsymbol{\nu})_{L^2(\partial \Omega)}
$$

• impedance:

$$
\langle Ku, v \rangle_{X',X} := -\alpha (\Delta u, \nabla v \cdot \nu)_{L^2(\partial \Omega)} + \alpha i \theta (\Delta u, v)_{L^2(\partial \Omega)} + \beta i \theta (\mathbf{n}^T (\mathcal{H}u) \mathbf{n}, v)_{L^2(\partial \Omega)} - \beta (\mathbf{n}^T (\mathcal{H}u) \mathbf{n}, \nabla v \cdot \nu)_{L^2(\partial \Omega)} - i \theta (u, v)_{L^2(\partial \Omega)}
$$

Roadmap

To show the well-posedness of [\(CP\)](#page-11-0), we take the following steps:

1. Study the EVP: find $u \in H_0^2(\Omega)$, $\lambda \in \mathbb{C}$ s.t.

$$
e(u,v)=\lambda(u,v)_{L^2(\Omega)}\quad \forall v\in H_0^2(\Omega);
$$

 \rightarrow self-adjointness, well-posedness, compact solution operator 2. Construct $T \in L(X)$ bijective and show that $e(\cdot, \cdot) - k^2(\cdot, \cdot)_{L^2(\Omega)}$ is T-coercive; 3. Show that $K \in L(X, X')$ is compact; 4. Show that $A \in L(X, X')$ is compact;
4. Show that $A \in L(X, X')$, $\langle Au, v \rangle_{X',X} := a(u, v)$, is injective. & *impedance* BCs

 \Rightarrow A is weakly T-coercive and injective, so [\(CP\)](#page-11-0) is well-posed.

Continuous Analysis: EVP

Find
$$
u \in H_0^2(\Omega)
$$
, $\lambda \in \mathbb{C}$ s.t. $e(u, v) = \lambda(u, v)_{L^2(\Omega)}$ for all $v \in H_0^2(\Omega)$,

$$
e(u,v):=\alpha(\Delta u,\Delta v)_{L^2(\Omega)}+\beta(\mathbf{n}^\mathsf{T}(\mathcal{H} u)\mathbf{n},\Delta v)_{L^2(\Omega)}+(\nabla u,\nabla v)_{L^2(\Omega)}.
$$

Lemma

If β is sufficiently small, the EVP is well-posed and the solution operator *is compact and self-adjoint.*

- \rightarrow self-adjointness of $\beta(n^T(\mathcal{H}u)n, \Delta v)_{L^2(\Omega)}$ by part. Int.
- \rightarrow coercivity of $e(\cdot, \cdot)$ on $H_0^2(\Omega)$ with C. S. and Poincaré ineq.
- \rightarrow compactness follows from the compact emb. $H_0^2(\Omega) \hookrightarrow L^2(\Omega)$

Continuous Analysis: T-coercivity

 \rightarrow \exists eigenpairs $(\lambda^{(i)}, e^{(i)})_{i \in \mathbb{N}}$ of $e(\cdot, \cdot)$ s.t. $(e^{(i)})_{i \in \mathbb{N}}$ forms an orthonormal basis of *X*

$$
\Rightarrow \text{ set } i_* := \min\{i \in \mathbb{N} : \lambda^{(i)} < k^2\} \text{ and define}
$$

$$
W := \text{span}_{0 \le i \le i_*} \{e^{(i)}\}, \qquad T := \text{Id}_X - 2P_W
$$

- \rightarrow *T* bijective & acts on eigenfcts. as $Te^{(i)} = \begin{cases} -e^{(i)} & \text{if } \lambda^{(i)} < k^2; \\ \pm e^{(i)} & \text{if } \lambda^{(i)} > k^2. \end{cases}$ $+e^{(i)}$ if $\lambda^{(i)} > k^2$. \rightarrow We have that
	- *e*(*Tu, u*) *k*²(*Tu, u*)₁₂ $= \sum C_{\lambda} (k^2 - \lambda^{(i)}) (u^{(i)})^2 + \sum$ $i< i_*$ $i > i_*$ $C_{\lambda}(\lambda^{(i)} - k^2)(u^{(i)})^2 \geq \gamma ||u||_X^2$

Continuous Analysis: compactness

Estimate each boundary term, e.g. for *sound hard* BCs ($\beta = 0$)

$$
||Ku||_{X'} = \sup_{v \in X \setminus \{0\}} \frac{|\langle K u, v \rangle_{X',X}|}{||v||_{H^2(\Omega)}} \leq \sup_{v \in X \setminus \{0\}} \frac{|\alpha| ||\gamma_0 \Delta u||_{L^2(\partial \Omega)} ||\gamma_0 \nabla v \cdot v||_{L^2(\partial \Omega)}} {||v||_{H^2(\Omega)}} \leq C |\alpha| ||\gamma_0 \Delta u||_{L^2(\partial \Omega)}
$$

- \rightarrow Thus: $\forall (u_n)_{n \in \mathbb{N}} \subset H^2$ s.t. $u_n \stackrel{H^2}{\longrightarrow} u \Rightarrow Ku_n \to Ku$, so K is compact
- \rightarrow use similar arguments for $\beta > 0$ & the *impedance* case

Continuous Analysis: injectivity

- \rightarrow need to assume that $k^2 \notin {\lambda^{(i)}}_{i \in \mathbb{N}}$
- \rightarrow for *impedance* case: take $v \in \text{ker } a(\cdot, \cdot)$, then

$$
0 = |-\Im a(v,v)| \geq \left|\frac{\alpha\zeta}{2} ||\Delta v||_{L^2(\partial\Omega)}^2 + \frac{\theta}{2\zeta} ||v||_{L^2(\partial\Omega)}^2\right|
$$

 $\rightarrow \gamma_0 v = 0$ and $\gamma_0 \Delta v = 0$ on $\partial \Omega$, use unique continuation principle to conclude that $v = 0$ in Ω

We have shown:

A is (weakly) T-coercive and injective \Rightarrow there $\exists ! u \in X$ s.t. $a(u, v) = (f, v)_{L^2(\Omega)}$ for all $v \in X$

[Discrete problem](#page-18-0)

Let ${T_h}_h$ be a family of shape regular, quasi-uniform, simplicial triangulations. We choose an *H*2-conforming finite element space, $p > 4$:

$$
X_h := \{ v \in H^2(\Omega) : v|_{\mathcal{T}} \in \mathcal{P}^p(\mathcal{T}) \quad \forall \mathcal{T} \in \mathcal{T}_h \}
$$

- \rightarrow imposing essential BCs for C^1 -conf. FEM challenging⁶;
- : use Nitsche's method to impose BCs (for *sound soft* & *sound hard*, not necessary for *impedance*)

⁶R.C. Kirby, L. Mitchell, *Code generation for generally mapped finite elements*. ACM TOMS, 2019.

Find
$$
u_h \in X_h
$$
 s.t. $a_h(u_h, v_h) = (f, v_h)_{L^2(\Omega)}$ for all $v_h \in X_h$, where

$$
a_h(u_h, v_h) := a(u_h, v_h) + \epsilon \left(\mathcal{N}_h(u_h, v_h) \right)
$$

- \rightarrow $\epsilon = 0$ for *impedance* BCs, $\epsilon = 1$ for *sound soft* BCs
- \rightarrow discrete analysis follows similar steps as the continuous case:
	- 1. analyse the discrete EVP (with potential Nitsche terms);
	- 2. construct T_h and show uniform T_h -coercivity;
- \rightarrow for *impedance* BCs ($\epsilon = 0$), we can neglect the compact term
- \rightarrow *sound hard* BCs can be analyzed with similar arguments

Nitsche terms

$$
\mathcal{N}_{h}(u_{h}, v_{h}) := \alpha (\nabla (\Delta u_{h}) \cdot \nu, v_{h})_{L^{2}(\partial \Omega)} - (\nabla u_{h} \cdot \nu, v_{h})_{L^{2}(\partial \Omega)}
$$
\n
$$
+ \beta (\nabla (\mathbf{n}^{T} (\mathcal{H} u_{h}) \mathbf{n}) \cdot \nu, v_{h})_{L^{2}(\partial \Omega)}
$$
\n
$$
+ \alpha (u_{h}, \nabla (\Delta v_{h}) \cdot \nu)_{L^{2}(\partial \Omega)} - (u_{h}, \nabla v_{h} \cdot \nu)_{L^{2}(\partial \Omega)}
$$
\n
$$
+ \beta (u_{h}, \nabla (\mathbf{n}^{T} (\mathcal{H} v_{h}) \mathbf{n}) \cdot \nu)_{L^{2}(\partial \Omega)}
$$
\n
$$
+ \alpha \frac{\eta_{1}}{h^{3}} (u_{h}, v_{h})_{L^{2}(\partial \Omega)} + \frac{\eta_{2}}{h} (u_{h}, v_{h})_{L^{2}(\partial \Omega)}
$$
\n
$$
+ \beta \frac{\eta_{3}}{h^{3}} (u_{h}, v_{h})_{L^{2}(\partial \Omega)}
$$
\n
$$
\rightarrow |\mathcal{N}_{h}(u_{h}, u_{h})| \gtrsim - \frac{\alpha \zeta_{1}}{h^{3}} ||\Delta u_{h}||_{L^{2}(\Omega)}^{2} - \frac{\zeta_{2}}{h} ||\nabla u_{h}||_{L^{2}(\Omega)}^{2} - \frac{\beta \zeta_{3}}{h^{3}} |u|_{H^{2}(\Omega)}^{2}
$$
\n
$$
+ \left(\frac{\alpha \eta_{1}}{h^{3}} - \frac{\alpha}{\zeta_{1}} + \frac{\eta_{2}}{h} - \frac{1}{\zeta_{2}} + \frac{\beta \eta_{3}}{h^{3}} - \frac{\beta}{\zeta_{3}}\right) ||u||_{L^{2}(\partial \Omega)}^{2}
$$

Discrete EVP

Find
$$
u_h \in \tilde{X}_h \subseteq X_h
$$
, $\lambda \in \mathbb{C}$, s.t. for all $v_h \in \tilde{X}_h$
 $e_h(u_h, v_h) := e(u_h, v_h) + \epsilon \mathcal{N}_h(u_h, v_h) = \lambda (u_h, v_h)_{L^2(\Omega)}$

$$
\Rightarrow \tilde{X}_h = X_h \text{ if } \epsilon = 1, \tilde{X}_h = X_h \cap \{u_h = 0 \text{ on } \partial\Omega\} \cap \{\Delta u_h = 0 \text{ on } \partial\Omega\} \text{ if } \epsilon = 0
$$

\n
$$
\Rightarrow \text{Discrete norm: } \|u_h\|_{\epsilon}^2 := |u_h|_{H^2(\Omega)}^2 + |u_h|_{H^1(\Omega)}^2 + \epsilon \|u\|_{L^2(\partial\Omega)}^2
$$

Lemma

For η_i , $i = 1, 2, 3$, large enough, the bilinear form $e_h(\cdot, \cdot)$ is uniformly coercive on \tilde{X}_h *w.r.t.* $\|\cdot\|_{\epsilon}$.

Proof.

Use the estimate for $\mathcal{N}_h(\cdot, \cdot)$ from the previous slide & choose ζ_i small enough, η_i large enough, $i = 1, 2, 3$.

$$
\Rightarrow \text{ define } T_h \in L(X_h) \text{ s.t } Te_h^{(i)} = \begin{cases} -e_h^{(i)} & \text{if } i \leq i_*; \\ +e_h^{(i)} & \text{if } i > i_*. \end{cases}
$$

 \rightarrow as in the continuous case, we have that

$$
e_h(T_hu_h, u_h) - k^2(T_hu_h, u_h)
$$

= $\sum_{0 \le i \le i_*} C_{\lambda_h}(k^2 - \lambda_h^{(i)})(u_h^{(i)})^2 + \sum_{i > i_*} C_{\lambda_h}(\lambda_h^{(i)} - k^2)(u_h^{(i)})^2 \ge \gamma \|u_h\|_{\epsilon}^2$,

if *h* is small enough s.t. $\lambda_h^{(i_*)} < k^2$.

- \rightarrow (there $\exists h_0$ s.t. $\forall h \leq h_0$) $a_h(\cdot, \cdot)$ is uniformly T_h -coercive
- → the discrete problem has a unique solution for *h* small enough

 \rightarrow $a_h(\cdot, \cdot)$ is continuous wrt (stronger) $\|\cdot\|_{h,\epsilon}$ -norm:

$$
||u_h||_{h,\epsilon}^2 := ||u_h||_{\epsilon}^2 + \epsilon \left(h^3 ||\nabla(\Delta u_h)||_{L^2(\partial\Omega)}^2 + h^3 ||\nabla(n^T \mathcal{H} u_h \mathbf{n})||_{L^2(\Omega)}^2 + h||\nabla u_h||_{L^2(\partial\Omega)} \right)
$$

- \rightarrow *a_h* is consistent, i.e. *a_h*(*u u_n*, *v_h*) = 0 for all *v_h* \in *X_h*
- \rightarrow with classical arguments, we can show that

$$
||u-u_h||_{h,\epsilon}\leq C\inf_{v_h\in X_h}||u-v_h||_{h,\epsilon}.
$$

[Numerical examples](#page-25-0)

Manufactured Solution

- \rightarrow plane wave solution $u(x) = e^{i\boldsymbol{d}\cdot\boldsymbol{x}}$, choose $\boldsymbol{d} \in \mathbb{C}^d$ s.t. *u* solves the nematic Helmholtz–Korteweg eqs.
- \rightarrow for $u \in H^5(\Omega)$, we can construct $I_h: u \rightarrow X_h$ s.t.

 $\|u - I_h u\|_{H^2(\Omega)} \leq h^3 \|u\|_{H^5(\Omega)}$

 \rightarrow dashed: $k = 20$, solid: $k = 30$

 $\alpha = 10^{-2}$

Gaussian pulse

\rightarrow rhs: symmetric Gaussian pulse in (0,0), *impedance* BCs, $k = 40$, $\alpha = 10^{-2}$

Mullen-Lüthi-Stephen experiment⁷

⁶M.E. Mullen, B. Lüthi, M.J. Stephen, *Sound velocity in a nematic liquid crystal*. Physics review letters, 1972.

Conclusion

- \rightarrow we showed well-posedness of the (continuous) nematic Helmholtz–Korteweg equations
	- \rightarrow (weak) T-coercivity argument where T flips the sign of 'problematic' eigenfcts.
	- : analysis appplies to *sound soft*, *sound hard* & *impedance* BCs
- \rightarrow we analysed the discretization with *H*²-conforming FEM
	- \rightarrow imposition of essential BCs through Nitsche's method
	- \rightarrow transfer T-coercivity arguments to the discrete level
- \rightarrow numerical experiments to study the effect of the nematic field on the propagation of acoustic waves

Thank you for your attention!