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Introduction

• Goal: describe time-harmonic acoustic wave
propagation in a nematic liquid crystal

• Korteweg-fluid: � = pI � u1⇢(r⇢⌦r⇢)

• nematic LC can be considered as a Korteweg-fluid:

� = pI � u1⇢(r⇢⌦r⇢)� u2(r⇢ · n)r⇢⌦ n

: time harmonic acoustic waves described by the
nematic Helmholtz–Korteweg equations!

: how does the alignment of the nematic field influence
the propagation of the acoustic wave?

W. Wang, L. Zhang, P. Zhang,
Modelling and computation of liquid crystals.

Acta Numerica, 2021.
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Nematic Helmholtz–Korteweg equation1

Given f 2 L
2(⌦), find u : ⌦! C s.t.

↵�2
u + �r ·r(nT (Hu)n)��u � k

2
u = f in ⌦,

Bu = (0, 0) on @⌦.

• ⌦ ⇢ Rd , d = 2, 3, bounded Lipschitz domain;
• ↵,� : constitution parameters;
• H: Hessian;
• n: orientation of the nematic field (knk = 1);
• k = !/c: (classic) wave-number;
• B: encodes the boundary conditions;

⌦

B

n

1
P.E. Farrell, U. Zerbinati, Time-harmonic waves in Korteweg and nematic-Korteweg fluids. arXiv, 2024.
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Boundary conditions2

: 4th-order PDE, so we need two boundary conditions
1. sound soft:

Bu := (u,�u +
�

↵
nT (Hu)n)

2. sound hard:
Bu := (@⌫u, @⌫�u +

�

↵
@⌫(nT (Hu)n))

3. impedance:

Bu := (@⌫u � i✓u, @⌫�u � i✓(
�

↵
nT (Hu)n �

�

↵
@⌫(nT (Hu)n)))

: our analysis covers all cases!

2
P.E. Farrell, U. Zerbinati, Time-harmonic waves in Korteweg and nematic-Korteweg fluids. arXiv, 2024.
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Abstract framework



Well-posedness

Let X be a Hilbert space, a : X ⇥ X ! C be a bounded sesquilinear form &
A 2 L(X ,X 0) be the associated operator: hAu, viX 0,X = a(u, v) 8u, v 2 X .
: find u 2 X s.t. Au = f in X

0 is well-posed
, A is a bounded isomorphism
, A is injective & ran(A) is closed & A

⇤ injective
, 9↵ > 0 s.t. kAukX 0 � ↵kukX for all u 2 X & A

⇤ injective

, inf
u2X

sup
v2X

|hAu, viX 0,X |

kukXkvkX
� ↵ > 0

| {z }
inf-sup condition3

& A
⇤ injective

Theorem (Lax-Milgram)
A is coercive, i.e. 9↵ > 0 s.t. <{hAu, uiX 0,X} � kuk

2
X
) A is a bounded isomorphism

3
F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers., R.A.I.R.O., 1974.
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T-coercivity

Simple observation: A bijective, 9 T bijective s.t. AT is coercive

Definition (T-coercivity4)
We call A 2 L(X ,X 0) T-coercive if there exists a bijective operator T 2 L(X ) s.t.
AT 2 L(X ,X 0) is coercive, i.e.

<{hATu, uiX 0,X} � ↵kuk2
X

: T-coercivity equivalent to well-posedness (necessary & su�cient)

: recover coercivity with T = Id

: not directly inherited to the discrete level

4
e.g. P. Ciarlet Jr., T-coercivity: Application to the discretization of Helmholtz-like problems. CAMWA, 2012.
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Construction of T – Example

For given k >> 0, f 2 L
2(⌦), find u 2 X s.t.

a(u, v) := e(u, v)� k
2(u, v)L2(⌦) = (f , v)L2(⌦) 8v 2 X , (P)

: {�(i), e(i)}i2N eigenpairs associated with e(·, ·), i⇤ 2 N s.t. �(i⇤) < k
2 < �(i⇤+1)

: construct T 2 L(X ) bijective, s.t.

Te
(i) =

(
�e

(i) if i  i⇤;

+e
(i) if i > i⇤.

: can show coercivity of a(T ·, ·) since

a(Te(i), e(i)) =

(
k

2
� �(i) if i  i⇤

�(i)
� k

2 if i > i⇤
> 0.

: what about boundary terms?
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Weak T-coercivity

Definition (Compact operator)
We call an operator K 2 L(X ,Y ) compact if 8 bounded (un)n2N ⇢ X , the sequence
(Kun)n2N ⇢ Y has a convergent subsequence.

Definition (Weak T-coercivity5)
A 2 L(X ,X 0) is called weakly T-coercive if there 9 T 2 L(X ) bijective, K 2 L(X ,X 0)
compact s.t. AT + K is coercive.

: i.e. AT = bij.+ comp., so AT is Fredholm with index zero!

: if A is weakly T-coercive and injective, then A is bijective

5
see e.g., M. Halla, Galerkin approximation of holomorphic eigenvalue problems: weak T-coercivity and T-compatibility. Numerische Mathematik, 2021.
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The discrete level

: (weak) T-coercivity not inherited to the discrete level!

Definition (Uniform Th-coercivity)
Let {Xh}h ⇢ X be a seq. of discrete spaces. We call A uniformly Th-coercive on
{Xh}h if there exists a family of bijective operators {Th}h, Th 2 L(Xh) and ↵⇤
independent of h s.t.

<{(AThuh, uh)Xh
} � ↵⇤kuhk

2
X
,

Theorem
Let A 2 L(X ) be injective and A = B + K , where B 2 L(X ) is bijective and K 2 L(X )
compact. If B is uniformly Th-coercive on {Xh}h ⇢ X , then there exists h0 > 0 s.t. A is
uniformly Th-coercive on {Xh}h for h  h0.
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Continuous problem



Weak formulation

We want to find u 2 X s.t.

a(u, v) = (f , v)L2(⌦) 8v 2 X , (CP)

where
a(u, v) :=↵(�u,�v)L2(⌦) + �(nT (Hu)n,�v)L2(⌦) + (ru,rv)L2(⌦)| {z }

=:e(u,v)

�k
2(u, v)L2(⌦)

+ hKu, viX 0,X

: K 2 L(X ,X 0) encodes the boundary conditions

: choice of X depends on BCs:
sound soft: X = H

2
0 (⌦) := H

2(⌦) \ H
1
0 (⌦),

sound hard & impedance: X = H
2(⌦)
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Boundary conditions

• sound soft: K := 0
• sound hard:

hKu, viX 0,X := �↵(�u,rv · ⌫)L2(@⌦) + �(nT (Hu)n,rv · ⌫)L2(@⌦)

• impedance:

hKu, viX 0,X :=� ↵(�u,rv · ⌫)L2(@⌦) + ↵i✓(�u, v)L2(@⌦)

+ �i✓(nT (Hu)n, v)L2(@⌦) � �(nT (Hu)n,rv · ⌫)L2(@⌦)

� i✓(u, v)L2(@⌦)
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Roadmap

To show the well-posedness of (CP), we take the following steps:
1. Study the EVP: find u 2 H

2
0 (⌦), � 2 C s.t.

e(u, v) = �(u, v)L2(⌦) 8v 2 H
2
0 (⌦);

: self-adjointness, well-posedness, compact solution operator
2. Construct T 2 L(X ) bijective and show that e(·, ·)� k

2(·, ·)L2(⌦) is T-coercive;
3. Show that K 2 L(X ,X 0) is compact;
4. Show that A 2 L(X ,X 0), hAu, viX 0,X := a(u, v), is injective.} only sound hard

& impedance BCs

) A is weakly T-coercive and injective, so (CP) is well-posed.
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Continuous Analysis: EVP

Find u 2 H
2
0 (⌦), � 2 C s.t. e(u, v) = �(u, v)L2(⌦) for all v 2 H

2
0 (⌦),

e(u, v) := ↵(�u,�v)L2(⌦) + �(nT (Hu)n,�v)L2(⌦) + (ru,rv)L2(⌦).

Lemma
If � is su�ciently small, the EVP is well-posed and the solution operator
is compact and self-adjoint.

: self-adjointness of �(nT (Hu)n,�v)L2(⌦) by part. Int.

: coercivity of e(·, ·) on H
2
0 (⌦) with C. S. and Poincaré ineq.

: compactness follows from the compact emb. H2
0 (⌦) ,! L

2(⌦)

EVP

T-coercivity

compactness

injectivity

EVP
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Continuous Analysis: T-coercivity

: 9 eigenpairs (�(i), e(i))i2N of e(·, ·) s.t. (e(i))i2N forms an
orthonormal basis of X

: set i⇤ := min{i 2 N : �(i) < k
2
} and define

W := span0ii⇤{e
(i)
}, T := IdX �2PW

: T bijective & acts on eigenfcts. as Te(i) =

(
�e

(i) if �(i) < k
2;

+e
(i) if �(i) > k

2.

: We have that

e(Tu, u)� k
2(Tu, u)L2

=
X

ii⇤

C�(k
2
� �(i))(u(i))2 +

X

i>i⇤

C�(�
(i)
� k

2)(u(i))2 � �kuk2
X

EVP

T-coercivity

compactness

injectivity

T-coercivity

14/26



Continuous Analysis: compactness

Estimate each boundary term, e.g. for sound hard BCs (� = 0)

kKukX 0 = sup
v2X\{0}

|hKu, viX 0,X |

kvkH2(⌦)

 sup
v2X\{0}

|↵|k�0�ukL2(@⌦)k�0rv · ⌫kL2(@⌦)|

kvkH2(⌦)

 C |↵|k�0�ukL2(@⌦)

: last step uses continuity of normal trace operator

: Thus: 8(un)n2N ⇢ H
2 s.t. un

H
2

* u ) Kun ! Ku, so K is compact

: use similar arguments for � > 0 & the impedance case

EVP

T-coercivity

compactness

injectivity

compactness
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Continuous Analysis: injectivity

: need to assume that k2
62 {�(i)

}i2N

: for impedance case: take v 2 ker a(·, ·), then

0 = |�=a(v , v)| �

����
↵⇣

2
k�vk

2
L2(@⌦) +

✓

2⇣
kvk

2
L2(@⌦)

����

: �0v = 0 and �0�v = 0 on @⌦, use unique continuation principle
to conclude that v = 0 in ⌦

We have shown:
A is (weakly) T-coercive and injective) there 9!u 2 X s.t.
a(u, v) = (f , v)L2(⌦) for all v 2 X

EVP

T-coercivity

compactness

injectivityinjectivity
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Discrete problem



Discretization

Let {Th}h be a family of shape regular, quasi-uniform, sim-
plicial triangulations. We choose an H

2-conforming finite
element space, p > 4:

Xh := {v 2 H
2(⌦) : v |T 2 P

p(T ) 8T 2 Th}

: imposing essential BCs for C1-conf. FEM challenging6;

: use Nitsche’s method to impose BCs (for sound soft &
sound hard, not necessary for impedance)

 

  

 

Argyris-element,
p � 5

6
R.C. Kirby, L. Mitchell, Code generation for generally mapped finite elements. ACM TOMS, 2019.

17/26



Discrete problem

Find uh 2 Xh s.t. ah(uh, vh) = (f , vh)L2(⌦) for all vh 2 Xh, where

ah(uh, vh) := a(uh, vh) + ✏ (Nh(uh, vh))

: ✏ = 0 for impedance BCs, ✏ = 1 for sound soft BCs

: discrete analysis follows similar steps as the continuous case:
1. analyse the discrete EVP (with potential Nitsche terms);
2. construct Th and show uniform Th-coercivity;

: for impedance BCs (✏ = 0), we can neglect the compact term

: sound hard BCs can be analyzed with similar arguments
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Nitsche terms

Nh(uh, vh) :=↵(r(�uh) · ⌫, vh)L2(@⌦) � (ruh · ⌫, vh)L2(@⌦)

+�(r(nT (Huh)n) · ⌫, vh)L2(@⌦)

+↵(uh,r(�vh) · ⌫)L2(@⌦) � (uh,rvh · ⌫)L2(@⌦)

+�(uh,r(nT (Hvh)n) · ⌫)L2(@⌦)

+↵
⌘1

h3 (uh, vh)L2(@⌦) +
⌘2

h
(uh, vh)L2(@⌦)

+�
⌘3

h3 (uh, vh)L2(@⌦)

}
}
}

natural boundary
terms

symmetry
terms

penalty
terms

: |Nh(uh, uh)| &�
↵⇣1
h3 k�uhk

2
L2(⌦) �

⇣2
h
kruhk

2
L2(⌦) �

�⇣3
h3 |u|

2
H2(⌦)

+

✓
↵⌘1

h3 �
↵

⇣1
+

⌘2

h
�

1
⇣2

+
�⌘3

h3 �
�

⇣3

◆
kuk

2
L2(@⌦)
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Discrete EVP

Find uh 2 X̃h ✓ Xh, � 2 C, s.t. for all vh 2 X̃h

eh(uh, vh) := e(uh, vh) + ✏Nh(uh, vh) = �(uh, vh)L2(⌦)

: X̃h = Xh if ✏ = 1, X̃h = Xh \ {uh = 0 on @⌦} \ {�uh = 0 on @⌦} if ✏ = 0
: Discrete norm: kuhk2✏ := |uh|

2
H2(⌦) + |uh|

2
H1(⌦) + ✏kuk2

L2(@⌦)

Lemma
For ⌘i , i = 1, 2, 3, large enough, the bilinear form eh(·, ·) is uniformly coercive on X̃h

w.r.t. k · k✏.

Proof.
Use the estimate for Nh(·, ·) from the previous slide & choose ⇣i small enough, ⌘i
large enough, i = 1, 2, 3.
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Discrete Th-coercivity

: define Th 2 L(Xh) s.t Te
(i)
h

=

(
�e

(i)
h

if i  i⇤;

+e
(i)
h

if i > i⇤.

: as in the continuous case, we have that

eh(Thuh, uh)� k
2(Thuh, uh)

=
X

0ii⇤

C�h
(k2
� �(i)

h
)(u(i)

h
)2 +

X

i>i⇤

C�h
(�(i)

h
� k

2)(u(i)
h
)2 � �kuhk

2
✏ ,

if h is small enough s.t. �(i⇤)
h

< k
2.

: (there 9h0 s.t. 8h  h0) ah(·, ·) is uniformly Th-coercive

: the discrete problem has a unique solution for h small enough
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Best approximation

: ah(·, ·) is continuous wrt (stronger) k · kh,✏-norm:

kuhk
2
h,✏ := kuhk

2
✏+✏

⇣
h

3
kr(�uh)k

2
L2(@⌦) + h

3
kr(nT

Huhn)k2L2(⌦) + hkruhkL2(@⌦)

⌘

: ah is consistent, i.e. ah(u � un, vh) = 0 for all vh 2 Xh

: with classical arguments, we can show that

ku � uhkh,✏  C inf
vh2Xh

ku � vhkh,✏.
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Numerical examples



Manufactured Solution

: plane wave solution u(x) = e
id ·x ,

choose d 2 Cd s.t. u solves the
nematic Helmholtz–Korteweg eqs.

: for u 2 H
5(⌦), we can construct

Ih : u ! Xh s.t.

ku � IhukH2(⌦)  h
3
kukH5(⌦)

: dashed: k = 20, solid: k = 30
0 1 2 3 4

10�6

10�4

10�2

100

Ref. lvl.

k
u
�
u
h
k
H

2
(⌦

)

↵ = 10�2

� = 0
� = 5 · 10�3
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Gaussian pulse

: rhs: symmetric Gaussian pulse in (0, 0), impedance BCs, k = 40, ↵ = 10�2

� = 0 � = 5 · 10�3 � = 5 · 10�3 � = 5 · 10�3
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Mullen-Lüthi-Stephen experiment7

6
M.E. Mullen, B. Lüthi, M.J. Stephen, Sound velocity in a nematic liquid crystal. Physics review letters, 1972.
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Conclusion

: we showed well-posedness of the (continuous) nematic Helmholtz–Korteweg
equations
: (weak) T-coercivity argument where T flips the sign of ’problematic’ eigenfcts.
: analysis appplies to sound soft, sound hard & impedance BCs

: we analysed the discretization with H
2-conforming FEM

: imposition of essential BCs through Nitsche’s method
: transfer T-coercivity arguments to the discrete level

: numerical experiments to study the e�ect of the nematic field on the
propagation of acoustic waves

Thank you for your attention!
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