

Analysis and approximation of the nematic Helmholtz–Korteweg equation

Patrick E. Farrell¹, <u>Tim van Beeck</u>², Umberto Zerbinati¹

¹University of Oxford; ²University of Göttingen

Applied Mathematics Seminar, Pavia, Dec. 10th, 2024

Introduction

- Goal: describe time-harmonic acoustic wave propagation in a nematic liquid crystal
- Korteweg-fluid: $\underline{\sigma} = p \underline{l} u_1 \rho (\nabla \rho \otimes \nabla \rho)$
- nematic LC can be considered as a Korteweg-fluid:

$$\underline{\underline{\sigma}} = p\underline{\underline{l}} - u_1\rho(\nabla\rho\otimes\nabla\rho) - u_2(\nabla\rho\cdot\boldsymbol{n})\nabla\rho\otimes\boldsymbol{n}$$

- → time harmonic acoustic waves described by the nematic Helmholtz–Korteweg equations!
- → how does the alignment of the nematic field influence the propagation of the acoustic wave?

W. Wang, L. Zhang, P. Zhang, Modelling and computation of liquid crystals. Acta Numerica, 2021.

Nematic Helmholtz–Korteweg equation¹

Given
$$f \in L^2(\Omega)$$
, find $u : \Omega \to \mathbb{C}$ s.t.
 $\alpha \Delta^2 u + \beta \nabla \cdot \nabla (\boldsymbol{n}^T (\mathcal{H} u) \boldsymbol{n}) - \Delta u - k^2 u = f \quad \text{in } \Omega,$
 $\mathcal{B} u = (0, 0) \quad \text{on } \partial \Omega.$

•
$$\Omega \subset \mathbb{R}^d$$
, $d = 2, 3$, bounded Lipschitz domain;

- α, β : constitution parameters;
- \mathcal{H} : Hessian;
- *n*: orientation of the nematic field (||n|| = 1);
- $k = \omega/c$: (classic) wave-number;
- *B*: encodes the boundary conditions;

¹P.E. Farrell, U. Zerbinati, *Time-harmonic waves in Korteweg and nematic-Korteweg fluids*. arXiv, 2024.

Boundary conditions²

→ 4th-order PDE, so we need two boundary conditions
 1. sound soft:

$$\mathcal{B}u := (u, \Delta u + \frac{\beta}{lpha} \boldsymbol{n}^{\mathsf{T}}(\mathcal{H}u)\boldsymbol{n})$$

2. *sound hard:*

$$\mathcal{B}\boldsymbol{u} := (\partial_{\boldsymbol{\nu}}\boldsymbol{u}, \partial_{\boldsymbol{\nu}}\Delta\boldsymbol{u} + \frac{\beta}{\alpha}\partial_{\boldsymbol{\nu}}(\boldsymbol{n}^{\mathsf{T}}(\mathcal{H}\boldsymbol{u})\boldsymbol{n}))$$

3. *impedance*:

$$\mathcal{B}\boldsymbol{u} := (\partial_{\boldsymbol{\nu}}\boldsymbol{u} - i\theta\boldsymbol{u}, \partial_{\boldsymbol{\nu}}\Delta\boldsymbol{u} - i\theta(\frac{\beta}{\alpha}\boldsymbol{n}^{\mathsf{T}}(\mathcal{H}\boldsymbol{u})\boldsymbol{n} - \frac{\beta}{\alpha}\partial_{\boldsymbol{\nu}}(\boldsymbol{n}^{\mathsf{T}}(\mathcal{H}\boldsymbol{u})\boldsymbol{n})))$$

 \rightarrow our analysis covers all cases!

² P.E. Farrell, U. Zerbinati, *Time-harmonic waves in Korteweg and nematic-Korteweg fluids.* arXiv, 2024.

Abstract framework

Well-posedness

Let X be a Hilbert space, $a : X \times X \to \mathbb{C}$ be a bounded sesquilinear form & $A \in L(X, X')$ be the associated operator: $\langle Au, v \rangle_{X',X} = a(u, v) \; \forall u, v \in X.$ \Rightarrow find $u \in X$ s.t. Au = f in X' is well-posed \Leftrightarrow A is a bounded isomorphism \Leftrightarrow A is injective & ran(A) is closed & A* injective $\Leftrightarrow \exists \alpha > 0 \text{ s.t. } ||Au||_{X'} \ge \alpha ||u||_X \text{ for all } u \in X \& A^* \text{ injective}$ $\Leftrightarrow \underbrace{\inf_{u \in X} \sup_{v \in X} \frac{|\langle Au, v \rangle_{X',X}|}{||u||_X ||v||_X} \ge \alpha > 0 \& A^* \text{ injective}}_{\text{inf-sup condition}^3}$

Theorem (Lax-Milgram)

A is coercive, i.e. $\exists \alpha > 0$ s.t. $\Re\{\langle Au, u \rangle_{X',X}\} \ge \|u\|_X^2 \Rightarrow A$ is a bounded isomorphism

³ F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers., R.A.I.R.O., 1974.

Simple observation: A bijective $\Leftrightarrow \exists T$ bijective s.t. AT is coercive

Definition (T-coercivity⁴)

We call $A \in L(X, X')$ *T-coercive* if there exists a bijective operator $T \in L(X)$ s.t. $AT \in L(X, X')$ is coercive, i.e.

$$\Re\{\langle ATu, u \rangle_{X', X}\} \geq \alpha \|u\|_X^2$$

- → T-coercivity equivalent to well-posedness (necessary & sufficient)
- \rightarrow recover coercivity with T = Id
- \rightarrow not directly inherited to the discrete level

⁴e.g. P. Ciarlet Jr., *T-coercivity: Application to the discretization of Helmholtz-like problems*. CAMWA, 2012.

Construction of T – Example

For given $k \gg 0$, $f \in L^2(\Omega)$, find $u \in X$ s.t. $a(u, v) := e(u, v) - k^2(u, v)_{L^2(\Omega)} = (f, v)_{L^2(\Omega)} \quad \forall v \in X,$ (P)

→ {λ⁽ⁱ⁾, e⁽ⁱ⁾}_{i∈ℕ} eigenpairs associated with e(·, ·), i_{*} ∈ ℕ s.t. λ^(i*) < k² < λ^(i*+1)
 → construct T ∈ L(X) bijective, s.t.

$$Te^{(i)} = egin{cases} -e^{(i)} & ext{if } i \leq i_*; \ +e^{(i)} & ext{if } i > i_*. \end{cases}$$

 \rightarrow can show coercivity of $a(T \cdot, \cdot)$ since

$$\mathbf{a}(Te^{(i)}, e^{(i)}) = egin{cases} k^2 - \lambda^{(i)} & ext{if } i \leq i_* \ \lambda^{(i)} - k^2 & ext{if } i > i_* \end{cases} > 0.$$

 \rightarrow what about boundary terms?

Definition (Compact operator)

We call an operator $K \in L(X, Y)$ compact if \forall bounded $(u_n)_{n \in \mathbb{N}} \subset X$, the sequence $(Ku_n)_{n \in \mathbb{N}} \subset Y$ has a convergent subsequence.

Definition (Weak T-coercivity⁵)

 $A \in L(X, X')$ is called *weakly T-coercive* if there $\exists T \in L(X)$ bijective, $K \in L(X, X')$ compact s.t. AT + K is coercive.

- \rightarrow i.e. AT = bij. + comp., so AT is Fredholm with index zero!
- \rightarrow if *A* is weakly T-coercive and injective, then *A* is bijective

⁵ see e.g., M. Halla, Galerkin approximation of holomorphic eigenvalue problems: weak T-coercivity and T-compatibility. Numerische Mathematik, 2021.

\rightarrow (weak) T-coercivity not inherited to the discrete level!

Definition (Uniform T_h-coercivity)

Let $\{X_h\}_h \subset X$ be a seq. of discrete spaces. We call A uniformly T_h -coercive on $\{X_h\}_h$ if there exists a family of bijective operators $\{T_h\}_h$, $T_h \in L(X_h)$ and α_* independent of h s.t.

$$\Re\{(AT_hu_h, u_h)_{X_h}\} \geq \alpha_* \|u_h\|_X^2,$$

Theorem

Let $A \in L(X)$ be injective and A = B + K, where $B \in L(X)$ is bijective and $K \in L(X)$ compact. If B is uniformly T_h -coercive on $\{X_h\}_h \subset X$, then there exists $h_0 > 0$ s.t. A is uniformly T_h -coercive on $\{X_h\}_h$ for $h \leq h_0$.

Continuous problem

Weak formulation

We want to find $u \in X$ s.t.

$$a(u,v) = (f,v)_{L^2(\Omega)} \quad \forall v \in X,$$
 (CP)

where

$$a(u,v) := \underbrace{\alpha(\Delta u, \Delta v)_{L^{2}(\Omega)} + \beta(\mathbf{n}^{T}(\mathcal{H}u)\mathbf{n}, \Delta v)_{L^{2}(\Omega)} + (\nabla u, \nabla v)_{L^{2}(\Omega)}}_{=:e(u,v)} - k^{2}(u,v)_{L^{2}(\Omega)}$$

- → $K \in L(X, X')$ encodes the boundary conditions
- → choice of X depends on BCs: sound soft: $X = H_0^2(\Omega) := H^2(\Omega) \cap H_0^1(\Omega)$, sound hard & impedance: $X = H^2(\Omega)$

- sound soft: K := 0
- sound hard:

$$\langle \mathsf{K} u, v \rangle_{\mathsf{X}',\mathsf{X}} := -\alpha (\Delta u, \nabla v \cdot \boldsymbol{\nu})_{L^2(\partial \Omega)} + \beta (\boldsymbol{n}^T (\mathcal{H} u) \boldsymbol{n}, \nabla v \cdot \boldsymbol{\nu})_{L^2(\partial \Omega)}$$

• *impedance*:

$$\begin{aligned} \langle \mathsf{K}u, \mathsf{v} \rangle_{X',X} &:= -\alpha (\Delta u, \nabla \mathsf{v} \cdot \boldsymbol{\nu})_{L^2(\partial \Omega)} + \alpha i\theta (\Delta u, \mathsf{v})_{L^2(\partial \Omega)} \\ &+ \beta i\theta (\boldsymbol{n}^{\mathsf{T}}(\mathcal{H}u)\boldsymbol{n}, \mathsf{v})_{L^2(\partial \Omega)} - \beta (\boldsymbol{n}^{\mathsf{T}}(\mathcal{H}u)\boldsymbol{n}, \nabla \mathsf{v} \cdot \boldsymbol{\nu})_{L^2(\partial \Omega)} \\ &- i\theta (u, \mathsf{v})_{L^2(\partial \Omega)} \end{aligned}$$

Roadmap

only sound hard

To show the well-posedness of (CP), we take the following steps:

1. Study the EVP: find $u \in H^2_0(\Omega)$, $\lambda \in \mathbb{C}$ s.t.

$$e(u,v) = \lambda(u,v)_{L^2(\Omega)} \quad \forall v \in H^2_0(\Omega);$$

 \rightarrow self-adjointness, well-posedness, compact solution operator

- 2. Construct $T \in L(X)$ bijective and show that $e(\cdot, \cdot) k^2(\cdot, \cdot)_{L^2(\Omega)}$ is T-coercive;
- 3. Show that $K \in L(X, X')$ is compact;

4. Show that $A \in L(X, X')$, $\langle Au, v \rangle_{X', X} := a(u, v)$, is injective $\int \& impedance BCs$

 $\Rightarrow \mathcal{A}$ is weakly T-coercive and injective, so (CP) is well-posed.

Continuous Analysis: EVP

Find
$$u \in H^2_0(\Omega)$$
, $\lambda \in \mathbb{C}$ s.t. $e(u, v) = \lambda(u, v)_{L^2(\Omega)}$ for all $v \in H^2_0(\Omega)$,

$$e(u,v) := \alpha(\Delta u, \Delta v)_{L^2(\Omega)} + \beta(\boldsymbol{n}^T(\mathcal{H}u)\boldsymbol{n}, \Delta v)_{L^2(\Omega)} + (\nabla u, \nabla v)_{L^2(\Omega)}$$

Lemma

If β is sufficiently small, the EVP is well-posed and the solution operator is compact and self-adjoint.

- → self-adjointness of $\beta(\boldsymbol{n}^{\mathsf{T}}(\mathcal{H}u)\boldsymbol{n}, \Delta v)_{L^{2}(\Omega)}$ by part. Int.
- → coercivity of $e(\cdot, \cdot)$ on $H_0^2(\Omega)$ with C. S. and Poincaré ineq.
- → compactness follows from the compact emb. $H_0^2(\Omega) \hookrightarrow L^2(\Omega)$

Continuous Analysis: T-coercivity

→ ∃ eigenpairs (λ⁽ⁱ⁾, e⁽ⁱ⁾)_{i∈ℕ} of e(·, ·) s.t. (e⁽ⁱ⁾)_{i∈ℕ} forms an orthonormal basis of X
 → set i_{*} := min{i ∈ ℕ : λ⁽ⁱ⁾ < k²} and define

$$W := \operatorname{span}_{0 \le i \le i_*} \{ e^{(i)} \}, \qquad T := \operatorname{Id}_X - 2P_W$$

- → *T* bijective & acts on eigenfcts. as $Te^{(i)} = \begin{cases} -e^{(i)} & \text{if } \lambda^{(i)} < k^2; \\ +e^{(i)} & \text{if } \lambda^{(i)} > k^2. \end{cases}$
- \rightarrow We have that

$$e(Tu, u) - k^{2}(Tu, u)_{L^{2}}$$

= $\sum_{i \leq i_{*}} C_{\lambda}(k^{2} - \lambda^{(i)})(u^{(i)})^{2} + \sum_{i > i_{*}} C_{\lambda}(\lambda^{(i)} - k^{2})(u^{(i)})^{2} \geq \gamma ||u||_{2}^{2}$

Continuous Analysis: compactness

Estimate each boundary term, e.g. for sound hard BCs ($\beta = 0$)

$$\begin{aligned} \|\mathcal{K}u\|_{X'} &= \sup_{v \in X \setminus \{0\}} \frac{|\langle \mathcal{K}u, v \rangle_{X', X}|}{\|v\|_{H^{2}(\Omega)}} \\ &\leq \sup_{v \in X \setminus \{0\}} \frac{|\alpha| \|\gamma_{0} \Delta u\|_{L^{2}(\partial \Omega)} \|\gamma_{0} \nabla v \cdot \boldsymbol{\nu}\|_{L^{2}(\partial \Omega)}}{\|v\|_{H^{2}(\Omega)}} \\ &\leq C |\alpha| \|\gamma_{0} \Delta u\|_{L^{2}(\partial \Omega)} \end{aligned}$$

- → Thus: $\forall (u_n)_{n \in \mathbb{N}} \subset H^2$ s.t. $u_n \stackrel{H^2}{\rightharpoonup} u \Rightarrow Ku_n \rightarrow Ku$, so K is compact
- \rightarrow use similar arguments for $\beta > 0$ & the *impedance* case

Continuous Analysis: injectivity

- \rightarrow need to assume that $k^2 \notin \{\lambda^{(i)}\}_{i \in \mathbb{N}}$
- \rightarrow for *impedance* case: take $v \in \ker a(\cdot, \cdot)$, then

$$0 = |-\Im a(v,v)| \geq \left|\frac{\alpha\zeta}{2} \|\Delta v\|_{L^2(\partial\Omega)}^2 + \frac{\theta}{2\zeta} \|v\|_{L^2(\partial\Omega)}^2\right|$$

→ $\gamma_0 v = 0$ and $\gamma_0 \Delta v = 0$ on $\partial \Omega$, use unique continuation principle to conclude that v = 0 in Ω

We have shown:

 \mathcal{A} is (weakly) T-coercive and injective \Rightarrow there $\exists ! u \in X$ s.t. $a(u, v) = (f, v)_{L^2(\Omega)}$ for all $v \in X$

Discrete problem

Let $\{\mathcal{T}_h\}_h$ be a family of shape regular, quasi-uniform, simplicial triangulations. We choose an H^2 -conforming finite element space, p > 4:

$$X_h := \{ v \in H^2(\Omega) : v |_T \in \mathcal{P}^p(T) \mid \forall T \in \mathcal{T}_h \}$$

- \rightarrow imposing essential BCs for C^1 -conf. FEM challenging⁶;
- → use Nitsche's method to impose BCs (for *sound soft* & *sound hard*, not necessary for *impedance*)

⁶R.C. Kirby, L. Mitchell, Code generation for generally mapped finite elements. ACM TOMS, 2019.

Find $u_h \in X_h$ s.t. $a_h(u_h, v_h) = (f, v_h)_{L^2(\Omega)}$ for all $v_h \in X_h$, where

$$a_h(u_h, v_h) := a(u_h, v_h) + \epsilon \left(\mathcal{N}_h(u_h, v_h) \right)$$

 $\rightarrow \epsilon = 0$ for impedance BCs, $\epsilon = 1$ for sound soft BCs

→ discrete analysis follows similar steps as the continuous case:

- 1. analyse the discrete EVP (with potential Nitsche terms);
- 2. construct T_h and show uniform T_h -coercivity;
- \rightarrow for *impedance* BCs ($\epsilon = 0$), we can neglect the compact term
- → sound hard BCs can be analyzed with similar arguments

Nitsche terms

$$\mathcal{N}_{h}(u_{h}, v_{h}) := \alpha(\nabla(\Delta u_{h}) \cdot \boldsymbol{\nu}, v_{h})_{L^{2}(\partial\Omega)} - (\nabla u_{h} \cdot \boldsymbol{\nu}, v_{h})_{L^{2}(\partial\Omega)} \\ + \beta(\nabla(\boldsymbol{n}^{T}(\mathcal{H}u_{h})\boldsymbol{n}) \cdot \boldsymbol{\nu}, v_{h})_{L^{2}(\partial\Omega)} \\ + \alpha(u_{h}, \nabla(\Delta v_{h}) \cdot \boldsymbol{\nu})_{L^{2}(\partial\Omega)} - (u_{h}, \nabla v_{h} \cdot \boldsymbol{\nu})_{L^{2}(\partial\Omega)} \\ + \beta(u_{h}, \nabla(\boldsymbol{n}^{T}(\mathcal{H}v_{h})\boldsymbol{n}) \cdot \boldsymbol{\nu})_{L^{2}(\partial\Omega)} \\ + \alpha\frac{\eta_{1}}{h^{3}}(u_{h}, v_{h})_{L^{2}(\partial\Omega)} + \frac{\eta_{2}}{h}(u_{h}, v_{h})_{L^{2}(\partial\Omega)} \\ + \beta\frac{\eta_{3}}{h^{3}}(u_{h}, v_{h})_{L^{2}(\partial\Omega)} \\ + \beta\frac{\eta_{3}}{h^{3}}(u_{h}, v_{h})_{L^{2}(\partial\Omega)} \\ + \left(\frac{\alpha\eta_{1}}{h^{3}} - \frac{\alpha}{\zeta_{1}} + \frac{\eta_{2}}{h} - \frac{1}{\zeta_{2}} + \frac{\beta\eta_{3}}{h^{3}} - \frac{\beta}{\zeta_{3}}\right) \|\boldsymbol{u}\|_{L^{2}(\partial\Omega)}^{2}$$

Discrete EVP

Find
$$u_h \in \tilde{X}_h \subseteq X_h$$
, $\lambda \in \mathbb{C}$, s.t. for all $v_h \in \tilde{X}_h$
 $e_h(u_h, v_h) := e(u_h, v_h) + \epsilon \mathcal{N}_h(u_h, v_h) = \lambda(u_h, v_h)_{L^2(\Omega)}$

→
$$\tilde{X}_h = X_h$$
 if $\epsilon = 1$, $\tilde{X}_h = X_h \cap \{u_h = 0 \text{ on } \partial\Omega\} \cap \{\Delta u_h = 0 \text{ on } \partial\Omega\}$ if $\epsilon = 0$
→ Discrete norm: $\|u_h\|_{\epsilon}^2 := |u_h|_{H^2(\Omega)}^2 + |u_h|_{H^1(\Omega)}^2 + \epsilon \|u\|_{L^2(\partial\Omega)}^2$

Lemma

For η_i , i = 1, 2, 3, large enough, the bilinear form $e_h(\cdot, \cdot)$ is uniformly coercive on \tilde{X}_h w.r.t. $\|\cdot\|_{\epsilon}$.

Proof.

Use the estimate for $\mathcal{N}_h(\cdot, \cdot)$ from the previous slide & choose ζ_i small enough, η_i large enough, i = 1, 2, 3.

→ define
$$T_h \in L(X_h)$$
 s.t $Te_h^{(i)} = \begin{cases} -e_h^{(i)} & \text{if } i \leq i_*; \\ +e_h^{(i)} & \text{if } i > i_*. \end{cases}$

 \rightarrow as in the continuous case, we have that

$$e_h(T_hu_h, u_h) - k^2(T_hu_h, u_h) \\= \sum_{0 \le i \le i_*} C_{\lambda_h}(k^2 - \lambda_h^{(i)})(u_h^{(i)})^2 + \sum_{i > i_*} C_{\lambda_h}(\lambda_h^{(i)} - k^2)(u_h^{(i)})^2 \ge \gamma ||u_h||_{\epsilon}^2,$$

if *h* is small enough s.t. $\lambda_h^{(i_*)} < k^2$.

- → (there $\exists h_0$ s.t. $\forall h \leq h_0$) $a_h(\cdot, \cdot)$ is uniformly T_h -coercive
- \rightarrow the discrete problem has a unique solution for *h* small enough

→ $a_h(\cdot, \cdot)$ is continuous wrt (stronger) $\|\cdot\|_{h,\epsilon}$ -norm:

$$\|u_h\|_{h,\epsilon}^2 := \|u_h\|_{\epsilon}^2 + \epsilon \left(h^3 \|\nabla(\Delta u_h)\|_{L^2(\partial\Omega)}^2 + h^3 \|\nabla(\boldsymbol{n}^{\mathsf{T}} \mathcal{H} u_h \boldsymbol{n})\|_{L^2(\Omega)}^2 + h \|\nabla u_h\|_{L^2(\partial\Omega)}\right)$$

- → a_h is consistent, i.e. $a_h(u u_n, v_h) = 0$ for all $v_h \in X_h$
- \rightarrow with classical arguments, we can show that

$$\|u-u_h\|_{h,\epsilon} \leq C \inf_{v_h \in X_h} \|u-v_h\|_{h,\epsilon}.$$

Numerical examples

Manufactured Solution

- → plane wave solution $u(\mathbf{x}) = e^{i\mathbf{d}\cdot\mathbf{x}}$, choose $\mathbf{d} \in \mathbb{C}^d$ s.t. *u* solves the nematic Helmholtz–Korteweg eqs.
- → for $u \in H^5(\Omega)$, we can construct $I_h : u \to X_h$ s.t.

 $||u - I_h u||_{H^2(\Omega)} \le h^3 ||u||_{H^5(\Omega)}$

 \rightarrow dashed: k = 20, solid: k = 30

Gaussian pulse

\rightarrow rhs: symmetric Gaussian pulse in (0,0), *impedance* BCs, k = 40, $\alpha = 10^{-2}$

Mullen-Lüthi-Stephen experiment⁷

⁶M.E. Mullen, B. Lüthi, M.J. Stephen, *Sound velocity in a nematic liquid crystal*. Physics review letters, 1972.

Conclusion

- → we showed well-posedness of the (continuous) nematic Helmholtz–Korteweg equations
 - \rightarrow (weak) T-coercivity argument where T flips the sign of 'problematic' eigenfcts.
 - → analysis appplies to *sound soft*, *sound hard* & *impedance* BCs
- \rightarrow we analysed the discretization with H^2 -conforming FEM
 - → imposition of essential BCs through Nitsche's method
 - → transfer T-coercivity arguments to the discrete level
- → numerical experiments to study the effect of the nematic field on the propagation of acoustic waves

Thank you for your attention!