

Stable (hybrid) discontinuous Galerkin discretizations for Galbrun's equation

Martin Halla¹, Christoph Lehrenfeld², <u>Tim van Beeck²</u>

¹RICAM, Austrian Academy of Sciences, Linz ²Institute for Numerical and Applied Mathematics, University of Göttingen

WAVES 2024

Galbrun's equation

Find
$$\boldsymbol{u} : \mathcal{O} \subset \mathbb{R}^3 \to \mathbb{C}^3$$
 s.t.
 $-\nabla (c_s \rho \operatorname{div} \boldsymbol{u}) + (\operatorname{div} \boldsymbol{u}) \nabla \rho - \nabla (\nabla p \cdot \boldsymbol{u})$
 $-\rho(\omega + i\partial_{\boldsymbol{b}} + i\Omega \times)^2 \boldsymbol{u}$
 $+ (\operatorname{Hess}(p) - \rho \operatorname{Hess}(\Phi)) \boldsymbol{u} - \gamma \rho i \omega \boldsymbol{u} = \boldsymbol{f} \text{ in } \mathcal{O},$
 $\boldsymbol{\nu} \cdot \boldsymbol{u} = 0 \text{ on } \partial \mathcal{O}.$

 c_s : sound speed, ρ : density, **b**: background flow, γ : damping factor, ω : frequency, Ω : rotation, p: pressure, Φ : grav. potential

Challenges

- nonstandard differential operator $\partial_{\boldsymbol{b}} := \sum_{l=1}^{3} \boldsymbol{b}_{l} \partial_{x_{l}}$
- indefinite problem
- strongly varying coefficients
- high computational cost

- 1. Introduction
- 2. Abstract tools: (weakly) T-coercive operators & their approximation
- 3. Well-posedness of Galbrun's equation
- 4. Discretization
- 5. Numerical experiments

T-coercivity

Theorem (¹)

Let X be Hilbert and $a(\cdot, \cdot) : \mathbb{X} \times \mathbb{X} \to \mathbb{C}$ be a bounded sesquilinear form. The problem

find
$$u \in \mathbb{X}$$
 s.t. $a(u, v) = f(v) \quad \forall v \in \mathbb{X}$

is well-posed iff $\exists T : \mathbb{X} \to \mathbb{X}$ bijective s.t. $a(T \cdot, \cdot)$ is coercive, i.e.

$$\Re\{a(Tu,u)\} \ge \alpha \|u\|_X^2 \quad \forall u, v \in \mathbb{X}.$$

Note: For Hilbert spaces, T-coercivity is equivalent to the inf sup-condition.

- → necessary & sufficient condition for well-posedness
- → not automatically transferred to the discrete level

¹see e.g., A.S. Bonnet-Ben Dhia, P. Ciarlet, C.M. Zwölf, "Time harmonic wave diffraction problems in materials with sign-shifting coefficients, 2010.

Let $A \in L(\mathbb{X})$ be the associated operator to $a(\cdot, \cdot)$, i.e.

$$\langle Au, v \rangle_{\mathbb{X}} := a(u, v) \quad \forall u, v \in \mathbb{X}.$$

Then *A* is T-coercive, if there exists $T \in L(X)$ bijective s.t. *AT* is coercive.

Definition (weak T-coercivity)

 $A \in L(\mathbb{X})$ is weakly T-coercive, if $\exists T \in L(\mathbb{X})$ bijective and $K \in L(\mathbb{X})$ compact s.t. AT + K is coercive.

- → weakly T-coercive \Rightarrow Fredholm with index zero
- → weakly T-coercive + injective \Rightarrow bijective

Approximation of weakly T-coercive operators I/II

Definition (Discrete approximation scheme²)

 (\mathbb{X}_n,p_n,A_n) is a DAS of (\mathbb{X},A) if

- $p_n \in L(\mathbb{X}, \mathbb{X}_n)$ s.t. $\lim_{n \to \infty} \|p_n u\|_{\mathbb{X}_n} = \|u\|_{\mathbb{X}} \, \forall u \in \mathbb{X},$
- A_n approximates A, i.e. $\lim_{n\to\infty} \|(A_np_n - p_nA)u\|_{\mathbb{X}_n} = 0 \ \forall u \in \mathbb{X}.$

Example

A conforming Galerkin scheme, $X_n \subset X$, $p_n = \prod_{X_n}^{L^2}$, $A_n = (\prod_{X_n}^{L^2} A_n)|_{X_n}$ is always a discrete approximation scheme.

²goes back to (among others) Vainikko (1976), Stummel (1970,1971), Karma (1996).

6/20

Κ

Approximation of weakly T-coercive operators II/II G GEORG-AUGUST-UNIVER

AT = B

Assumptions

- (\mathbb{X}_n, p_n, A_n) is a DAS of (\mathbb{X}, A)
- A = B + K, *B* bijective, *K* compact
- A injective

Theorem (Weak T-compatibility³)

If there exists sequences $(A_n)_{n \in \mathbb{N}}, (T_n)_{n \in \mathbb{N}}, (B_n)_{n \in \mathbb{N}}, (K_n)_{n \in \mathbb{N}}$ such that $(T_n)_{n \in \mathbb{N}}$ and $(B_n)_{n \in \mathbb{N}}$ are uniformly stable, $(K_n)_{n \in \mathbb{N}}$ compact and

 $\lim_{n\to\infty}\|(T_np_n-p_nT)u\|_{\mathbb{X}_n}=0,\quad \lim_{n\to\infty}\|(B_np_n-p_nB)u\|_{\mathbb{X}_n}=0,\quad A_nT_n=B_n+K_n,$

then $(A_n)_{n\in\mathbb{N}}$ is stable, i.e. A_n^{-1} exists, $\|A_n^{-1}\|_{L(\mathbb{X}_n)} \leq C$ for all $n > n_0$.

³M. Halla, C. Lehrenfeld, P. Stocker, "A new T-compatibility condition and its application to the discretization of the damped time-harmonic Galbrun's equation", 2022.

Back to Galbrun's equation

Define

$$\mathbb{X} := \{ \boldsymbol{u} \in \boldsymbol{L}^{2}(\mathcal{O}) : \operatorname{div} \boldsymbol{u} \in L^{2}(\mathcal{O}), \partial_{\boldsymbol{b}}\boldsymbol{u} \in \boldsymbol{L}^{2}(\mathcal{O}), \boldsymbol{u} \cdot \boldsymbol{\nu} = 0 \text{ on } \partial \mathcal{O} \}, \\ \langle \boldsymbol{u}, \boldsymbol{u}' \rangle_{\mathbb{X}} := \langle \operatorname{div} \boldsymbol{u}, \operatorname{div} \boldsymbol{u}' \rangle_{\boldsymbol{L}^{2}} + \langle \boldsymbol{u}, \boldsymbol{u}' \rangle_{\boldsymbol{L}^{2}} + \langle \partial_{\boldsymbol{b}}\boldsymbol{u}, \partial_{\boldsymbol{b}}\boldsymbol{u}' \rangle_{\boldsymbol{L}^{2}}.$$

Weak formulation

Find $\boldsymbol{u} \in \mathbb{X}$ s.t. $\boldsymbol{a}(\boldsymbol{u}, \boldsymbol{u}') = \langle \boldsymbol{f}, \boldsymbol{u}' \rangle \ \forall \boldsymbol{u}' \in \mathbb{X}$, where

$$\begin{aligned} \mathsf{a}(\boldsymbol{u},\boldsymbol{u}') &:= \langle c_s^2 \rho \operatorname{div} \boldsymbol{u}, \operatorname{div} \boldsymbol{u}' \rangle - \langle \rho(\omega + i\partial_{\boldsymbol{b}} + i\Omega \times) \boldsymbol{u}, (\omega + i\partial_{\boldsymbol{b}} + i\Omega \times) \boldsymbol{u}' \rangle \\ &+ \langle \operatorname{div} \boldsymbol{u}, \nabla p \cdot \boldsymbol{u}' \rangle - \langle \nabla p \cdot \boldsymbol{u}, \operatorname{div} \boldsymbol{u}' \rangle - \langle (\operatorname{Hess}(p) - \rho \operatorname{Hess}(\phi)) \boldsymbol{u}, \boldsymbol{u}' \rangle \\ &- i\omega \langle \rho \gamma \boldsymbol{u}, \boldsymbol{u}' \rangle. \end{aligned}$$

→ Well-posed⁴ if $\|c_s^{-1}\boldsymbol{b}\|_{\boldsymbol{L}^{\infty}}^2 \lesssim 1$.

⁴M. Halla, T. Hohage, "On the well-posedness of the damped time-harmonic Galbrun equation and the equations of solar and stellar oscillation", 2021.

Dealing with the indefiniteness

"Simplified" Galbrun ($p \& \phi$ constant, $\Omega = 0$):

$$m{a}(m{u},m{u}') = \langle m{c}_s^2
ho \operatorname{div}m{u},\operatorname{div}m{u}'
angle - \langle
ho(\omega + i\partial_b)m{u}, (\omega + i\partial_b)m{u}'
angle - i\omega \langle
ho\gammam{u},m{u}'
angle = \langlem{f},m{u}'
angle.$$

Problem: if $u \in ker(div)$, then

$$\Re\{\boldsymbol{a}(\boldsymbol{u},\boldsymbol{u})\} = -\|\rho^{1/2}(\omega+i\partial_{\boldsymbol{b}})\boldsymbol{u}\|_{\boldsymbol{L}^{2}}^{2} \gtrsim \|\boldsymbol{u}\|_{\mathbb{X}}^{2}$$

Idea: Flip the problematic sign! For $\boldsymbol{u} \in \mathbb{X}$, find $\boldsymbol{v} \in H^2_*$.s.t.

$$\operatorname{div} \nabla v = \operatorname{div} \boldsymbol{u} \text{ in } \mathcal{O},$$
$$\boldsymbol{\nu} \cdot \nabla v = 0 \text{ on } \partial \mathcal{O}$$

and set $\mathbf{v} = \nabla \mathbf{v}$, $\mathbf{w} = \mathbf{u} - \mathbf{v}$, $T\mathbf{u} := \mathbf{v} - \mathbf{w}$. If $\mathbf{u} \in \text{ker}(\text{div})$, i.e. $\mathbf{u} = \mathbf{w}$, then

$$\Re\{\boldsymbol{a}(\boldsymbol{T}\boldsymbol{u},\boldsymbol{u})\} = \|\rho^{1/2}(\omega+i\partial_{\boldsymbol{b}})\boldsymbol{w}\|_{\boldsymbol{L}^{2}}^{2} \gtrsim \|\boldsymbol{u}\|_{\mathbb{X}}^{2}$$

Full equation

With $\boldsymbol{q} := c_s^{-2} \rho^{-1} \nabla \rho$, we write $\boldsymbol{a}(\boldsymbol{u}, \boldsymbol{u}') := \langle c_s^2 \rho(\operatorname{div} + \boldsymbol{q} \cdot) \boldsymbol{u}, (\operatorname{div} + \boldsymbol{q} \cdot) \boldsymbol{u}' \rangle - \langle \rho(\omega + i\partial_{\boldsymbol{b}} + i\Omega \times) \boldsymbol{u}, (\omega + i\partial_{\boldsymbol{b}} + i\Omega \times) \boldsymbol{u}' \rangle$ $+ \langle (\operatorname{Hess}(\rho) - \operatorname{Hess}(\phi) - c_s^2 \rho \boldsymbol{q} \otimes \boldsymbol{q}) \boldsymbol{u}, \boldsymbol{u}' \rangle - i\omega \langle \rho \gamma \boldsymbol{u}, \boldsymbol{u}' \rangle.$

Decomposition of \mathbb{X}

For $\boldsymbol{u} \in \mathbb{X}$, find $\boldsymbol{v} \in H^2_*$ s.t.

$$(\operatorname{div} + P_{L_0^2} \boldsymbol{q} \cdot + \boldsymbol{M}) \nabla \boldsymbol{v} = (\operatorname{div} + P_{L_0^2} \boldsymbol{q} \cdot + \boldsymbol{M}) \boldsymbol{u} \text{ in } \mathcal{O},$$
$$\boldsymbol{\nu} \cdot \nabla \boldsymbol{v} = 0 \text{ on } \partial \mathcal{O},$$

where $P_{L_0^2}$ is the orthogonal projection onto L_0^2 and M is a suitable operator of finite rank. Set $\mathbf{v} := \nabla \mathbf{v}$, $\mathbf{w} := \mathbf{u} - \mathbf{v}$, $T\mathbf{u} := \mathbf{v} - \mathbf{w}$. Then A is weakly T-coercive.

Discrete stability

Goal: transfer the decomposition of X to the discrete level Stability closely related to stable pairs for Stokes

- *H*¹-conforming discretization⁵
 - might need special meshes (barycentric refinement)
 - and / or k large enough
- *H*(div)-conforming DG⁶
- fully nonconforming DG⁷
- → now: hybrid DG

⁷TvB, "On stable discontinuous Galerkin discretizations for Galbrun's equation", 2023.

⁵M. Halla, C. Lehrenfeld, P. Stocker, "A new T-compatibility condition and its application to the discretization of the damped time-harmonic Galbrun's equation", 2022.

 $^{^{6}}$ M. Halla, "Convergence analysis of nonconform H(div)-finite elements for the damped time-harmonic Galbrun's equation", 2023.

(Hybrid) *H*(div)-conforming DG

Discretization

Let \mathcal{T}_n be a shape regular, quasi-uniform triangulation of \mathcal{O} and \mathcal{F}_n the set of faces. We set

$$\mathbb{X}_{n} := \mathbb{BDM}^{k}(\mathcal{T}_{n}) \times [\mathbb{P}^{k}(\mathcal{F}_{n})]^{d}$$
$$\langle \boldsymbol{u}_{n}, \boldsymbol{u}_{n}' \rangle_{\mathbb{X}_{n}} := \langle \operatorname{div} \boldsymbol{u}_{\tau}, \operatorname{div} \boldsymbol{u}_{\tau}' \rangle_{\boldsymbol{L}^{2}} + \langle \boldsymbol{u}_{\tau}, \boldsymbol{u}_{\tau}' \rangle_{\boldsymbol{L}^{2}} + \langle \boldsymbol{D}_{\boldsymbol{b}}^{n} \boldsymbol{u}_{n}, \boldsymbol{D}_{\boldsymbol{b}}^{n} \boldsymbol{u}_{n}' \rangle_{\boldsymbol{L}^{2}},$$

where D_{b}^{n} is a discrete version of ∂_{b} defined lateron.

For $\boldsymbol{u} \in \mathbb{X}$, we define $p_n \boldsymbol{u} \in \mathbb{X}_n$ as the solution to

$$\langle \rho_n \boldsymbol{u}, \boldsymbol{u}'_n
angle_{\mathbb{X}_n} = \langle \operatorname{div} \boldsymbol{u}, \operatorname{div} \boldsymbol{u}'_{\tau}
angle + \langle \boldsymbol{u}, \boldsymbol{u}'_{\tau}
angle + \langle \partial_{\boldsymbol{b}} \boldsymbol{u}, \boldsymbol{D}^n_{\boldsymbol{b}} \boldsymbol{u}'_n
angle \quad \forall \boldsymbol{u}'_n \in \mathbb{X}_n.$$

Lemma

For all $\boldsymbol{u} \in \mathbb{X}$, we have $\lim_{n\to\infty} \|\boldsymbol{p}_n \boldsymbol{u}\|_{\mathbb{X}_n} = \|\boldsymbol{u}\|_{\mathbb{X}}$.

Stabilization

For $\boldsymbol{u}_n = (\boldsymbol{u}_{\tau}, \boldsymbol{u}_F) \in \mathbb{X}$ and $\tau \in \mathcal{T}_n$, set

$$\llbracket \underline{\boldsymbol{u}}_{\underline{n}}
rbracket_{\boldsymbol{b}} := (\boldsymbol{b} \cdot \boldsymbol{
u}) \boldsymbol{u}_{\tau} - (\boldsymbol{b} \cdot \boldsymbol{
u}) \boldsymbol{u}_{F}$$

Goal: stabilization without penalty parameter depending on flow **b**

→ standard SIP method leads to further Mach number restrictions

Definition (Lifting operator)

For $\boldsymbol{u}_n \in \mathbb{X}_n$, let $\boldsymbol{R}^{\prime} \boldsymbol{u}_n \in [\mathbb{P}^{\prime}(\mathcal{T}_n)]^d$ be the solution to

$$\langle \boldsymbol{\mathcal{R}}' \boldsymbol{u}_n, \psi_n
angle = -\sum_{ au \in \mathcal{T}_n} \langle \llbracket \boldsymbol{u}_n
bracket_{\boldsymbol{b}}, \psi_n
angle_{\partial au} \quad orall \psi_n \in \llbracket \mathbb{P}'(\mathcal{T}_n)
bracket^d.$$

Then, we define for all $\tau \in \mathcal{T}_n$

$$(\boldsymbol{D}_{\boldsymbol{b}}^{n}\boldsymbol{u}_{n})|_{\tau} := \partial_{\boldsymbol{b}}(\boldsymbol{u}_{n}|_{\tau}) + \boldsymbol{R}^{\prime}\boldsymbol{u}_{n}.$$

Discrete problem

Find
$$\boldsymbol{u}_n = (\boldsymbol{u}_{\tau}, \boldsymbol{u}_F) \in \mathbb{X}_n$$
 s.t. $\boldsymbol{a}_n(\boldsymbol{u}_n, \boldsymbol{u}'_n) = \langle \boldsymbol{f}, \boldsymbol{u}'_n \rangle$ for all $\boldsymbol{u}'_n \in \mathbb{X}_n$ with
 $\boldsymbol{a}_n(\boldsymbol{u}_n, \boldsymbol{u}'_n) := \langle c_s^2 \rho \operatorname{div} \boldsymbol{u}_{\tau}, \operatorname{div} \boldsymbol{u}'_{\tau} \rangle - \langle \rho(\omega + i\boldsymbol{D}_b^n + i\Omega \times)\boldsymbol{u}_n, (\omega + i\boldsymbol{D}_b^n + i\Omega \times)\boldsymbol{u}'_n \rangle$
 $+ \langle \operatorname{div} \boldsymbol{u}_{\tau}, \nabla p \cdot \boldsymbol{u}'_{\tau} \rangle + \langle \nabla p \cdot \boldsymbol{u}_{\tau}, \operatorname{div} \boldsymbol{u}'_{\tau} \rangle$
 $+ \langle (\operatorname{Hess}(p) - \rho \operatorname{Hess}(\phi))\boldsymbol{u}_{\tau}, \boldsymbol{u}'_{\tau} \rangle - i\omega \langle \gamma \rho \boldsymbol{u}_{\tau}, \boldsymbol{u}'_{\tau} \rangle$
 $- \langle c_s^2 \rho \boldsymbol{u}_{\tau}, [\![\boldsymbol{u}'_n]\!]_{\nu} \rangle_{\partial \tau_n} - \langle c_s^2 \rho [\![\boldsymbol{u}_n]\!]_{\nu}, \boldsymbol{u}'_{\tau} \rangle_{\partial \tau_n} + \langle c_s^2 \rho \frac{\alpha}{h} [\![\boldsymbol{u}_n]\!]_{\nu}, [\![\boldsymbol{u}'_n]\!]_{\nu} \rangle_{\partial \tau_n}$

Lemma

We have that $\lim_{n\to\infty} \|(A_np_n - p_nA)\boldsymbol{u}\|_{\mathbb{X}_n} = 0$ for all $\boldsymbol{u} \in \mathbb{X}$.

Proof.

Main idea: For a bounded sequence $(u_n)_{n \in \mathbb{N}} \exists u \in \mathbb{X}$ s.t. $D_b^n u_n \stackrel{L^2}{\rightharpoonup} \partial_b u$.

Discrete decomposition

Take $u_n = (u_\tau, u_F) \in \mathbb{X}_n$. Decomposition of volume part: Find $v \in H^2_*$ s.t.

$$(\operatorname{div} + P_{L_0^2} \boldsymbol{q} \cdot + M) \nabla \tilde{\boldsymbol{v}} = (\operatorname{div} + \pi_n^l \boldsymbol{q} \cdot + M) \boldsymbol{u}_{\tau} \text{ in } \mathcal{O},$$
$$\boldsymbol{\nu} \cdot \nabla \tilde{\boldsymbol{v}} = 0 \text{ on } \partial \mathcal{O},$$

→ well-posed as $\boldsymbol{u}_{\tau} \in \mathbb{BDM}^k \subset H(\operatorname{div}) \quad (\boldsymbol{u}_{\tau} \in \mathbb{P}^k(\mathcal{T}_n) \Rightarrow \boldsymbol{u}_{\tau} - \mathcal{I}_{\llbracket \cdot \rrbracket_{\nu}}(\boldsymbol{u}_{\tau}) \in H(\operatorname{div}).)$ → Set $\boldsymbol{v}_{\tau} := \pi_n^d \nabla \tilde{\boldsymbol{v}}$ and $\boldsymbol{w}_{\tau} := \boldsymbol{u}_{\tau} - \boldsymbol{v}_{\tau}$

Decomposition of facet part: Set $\mathbf{v}_F := \mathbf{u}_F - \operatorname{tr}_{\mathcal{F}_n} \mathbf{w}_{\tau}$ and $\mathbf{w}_F := \operatorname{tr}_{\mathcal{F}_n} \mathbf{w}_{\tau}$. **Definition of** \mathcal{T}_n : Set $\mathcal{T}_n \mathbf{u}_n := \mathbf{v}_n - \mathbf{w}_n$.

Lemma

For all $\boldsymbol{u} \in \mathbb{X}$, it holds that $\lim_{n\to\infty} \|(T_n p_n - p_n T)\boldsymbol{u}\|_{\mathbb{X}_n} = 0$.

Theorem

Assume that $\|c_s^{-1}\boldsymbol{b}\|_{\boldsymbol{L}^{\infty}}^2 \leq 1$. Then the remaining weak T-compatibility conditions are satisfied for the discrete problem, i.e. $\exists (B_n)_{n \in \mathbb{N}}, (K_n)_{n \in \mathbb{N}}$ s.t. $(B_n)_{n \in \mathbb{N}}$ is uniformly stable, $(K_n)_{n \in \mathbb{N}}$ is compact, $A_n T_n = B_n + K_n$ and for all $\boldsymbol{u} \in \mathbb{X}$, we have

$$\lim_{n\to\infty}\|(B_np_n-p_nB)\boldsymbol{u}\|_{\mathbb{X}_n}=0.$$

Corollary

There exists an index n_0 s.t. the discrete problem has a unique solution for all $n > n_0$. If $\mathbf{u} \in \mathbb{X} \cap \mathbf{H}^{2+s}$, s > 0, $\rho \in W^{1+s,\infty}$ and $\mathbf{b} \in \mathbf{W}^{1+s,\infty}$, then

$$d_n(\boldsymbol{u}, \boldsymbol{u}_n) \leq C\left(h^{\min(1+s,k)} + h^{\min(s,l)}\right) \|\boldsymbol{u}\|_{\boldsymbol{H}^{2+s}}.$$

Numerical experiments: Convergence

Set
$$\mathcal{O} = \{x \in \mathbb{R}^2 : ||x||_2 \le 1\}$$
 and
 $\rho = \sqrt{10/\pi} \exp(-10(x^2 + y^2))$
 $c_s^2 = 1.44 + 0.25\rho, \omega = 0.78 \times 2\pi,$
 $\gamma = 0.1, \Omega = (0, 0), p = 1.44\rho + 0.08\rho^2$
 $\boldsymbol{b} = c_{\boldsymbol{b}}c_s \begin{pmatrix} -y \\ x \end{pmatrix}$

Calculate f s.t. the exact solution is

$$oldsymbol{u}_{\mathrm{ex}}=rac{1}{
ho}\sin(r^2)\sin(r^2-1)\left(egin{array}{c}+(1+i)g\-(1+i)g
ight),$$

where $g = \sqrt{\alpha/\pi} \exp(-\alpha(x^2 + y^2))$, $\alpha = \log(10^9)$, is a Gaussian peak.

Numerical example: Lifting vs SIP

Numerical example: Sun parameters⁸

⁸adapted from: J. Chabassier and M. Duruflé. "Solving time-harmonic Galbrun's equation with an arbitrary flow. Application to Helioseismology", 2018.

Numerical example: Sun parameters⁸

⁸ adapted from: J. Chabassier and M. Duruflé. "Solving time-harmonic Galbrun's equation with an arbitrary flow. Application to Helioseismology", 2018.

Conclusions

Conclusions

- → Discrete stability of Galbrun's equation related to stability of the Stokes complex
 - H^1 -conforming discretization only stable for special meshes / higher k
 - (*H*(div)-conforming) (H)DG are stable
- → Lifting operator gives stabilization without penalty parameter
- → Numerical experiments confirm convergence rates & work with sun parameters

Outlok

- → 3D simulation too expensive
- → physically relevant boundary conditions

Thank you for your attention!