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Abstract

In this thesis, we develop a discretization for a degenerate diffusion equation in the sense
that the diffusion only acts along a velocity field, which is a problem arising in the context
of a numerical model for solar and stellar oscillations. The main contribution of this thesis is
the derivation and analysis of a suitable symmetric interior penalty Discontinuous Galerkin
method. Proving coercivity and continuity, the well-posedness of the discrete problem
is established. Afterwards, a Ceá-type a priori error estimate is shown, and standard
interpolation results yield an optimal convergence result in an energy-like norm. We test
the method numerically for some example problems and consider especially constant and
non-constant densities.
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Introduction

Motivation

The sun has been studied intensively, yet many questions, like the origin of its magnetic
field, still remain open. One scientific field that might provide some answers is helioseis-
mology which studies the solar interior through solar oscillations.
In general, helioseismology methods can be classified into two classes: global helioseismol-
ogy and local helioseismology. The former studies the structure and physical conditions
in the interior of the sun by observing its modes of oscillation and building models to
match the data, whereas the latter uses surface flows in the convection zone to model three
dimensional subsurface flows.
As such, local helioseismology is important for studying phenomena like sunspots, darker
regions on the surface of the sun. Sunspots appear darker because they have a lower
temperature than their surrounding, which correlates with a stronger magnetic field in this
region. Figure 1 shows the different layers in the sun and a sunspot.
A more extensive overview over local helioseismology is provided by Gizon et al. in [GBS10].

Interpreting the solar seismic waves requires numerical simulations. Hence, a task of a
project of the CRC14561 aims to develop a numerical model for the equations of solar
and stellar oscillation. This thesis deals with a sub-problem of this task under simplifying
assumptions.

(a) Sunlayers, image credit: NASA/Goddard2 (b) Sunspot, image credit: NASA/SDO/AIA3

Figure 1: An overview of the different layers of the sun (left) and a sunspot (right).

1specifically project C04, which can be found at https://www.uni-goettingen.de/en/630954.html
2available at https://www.nasa.gov/images/content/462977main_sun_layers_full.jpg,

accessed 11.10.2021.
3available at https://spaceplace.nasa.gov/solar-activity/en/solar-activity2.en.jpg,

accessed 11.10.2021.
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Let us describe the time-harmonic equations of solar and stellar oscillations without
magnetic fields as derived by Lynden-Bell and Ostriker [LO67]:
Consider the background velocity u, the density ρ, the pressure p and the gravitational
potential φ of a stationary equilibrium solution of the conservation equations of mass and
momentum, given by the Euler equations and a potential equation for the gravitational
potential. Then, the displacement perturbations ξ of Lagrangian particles and the Eulerian
perturbation ϕ of the gravitational background potential φ satisfy

ρ(−iω + u · ∇+ Ω×)2ξ −∇(ρc2
s∇ · ξ) + (∇ · ξ)∇p−∇(∇p · ξ)

+(Hess(p)ξ − ρHess(φ))ξ − iγρωξ + ρ∇ϕ = s in D,

− 1

4πG
∆ϕ+∇ · (ρξ) = 0 in R3,

(0.1)

where D ⊂ R3 is a bounded Lipschitz domain. Further G denotes the gravitational con-
stant, cs the speed of sound, s the source terms caused by turbulent convection, Ω the
uniform angular velocity of the frame of reference and ω the angular frequency of the waves.

Recently, Halla and Hohage [HH21] proved the well-posedness of these equations, that is
the existence, uniqueness, and stability of solutions. Apart from this paper, there are few
results on the theoretical properties of these type of equations. In the following, we will
briefly describe the theoretical framework used in the paper. In particular, the following is
only relevant for the larger context and is not treated in the remainder of this thesis.
Before we introduce a weak formulation of (0.1), we will pose some assumptions on the
background flow u. First of all, we require u to be H(div)-type regular. Furthermore, u is
assumed to be subsonic, which means that the velocity of the background flow is lower
that the speed of sound. Mathematically, we can describe the latter in the following way:
For sufficiently smooth ρ, cs, D and homogeneous pressure p and gravity φ, u satisfies

‖c−1
s u‖∞ < 1.

Additionally, the Cowling approximation, cf. to [Chr03], sets ϕ = 0 reducing the problem
to a problem for ξ only.

Now, we define the following function space:

X := {ξ ∈ L2(D;C3) | div ξ ∈ L2(D;C), u · ∇ξ ∈ L2(D;C3), ξ · ν = 0 on ∂D}.
We equip this space with the canonical inner product

〈ξ, ξ′〉X = 〈∇ · ξ,∇ · ξ′〉+ 〈u · ∇ξ, u · ∇ξ′〉+ 〈ξ, ξ′〉, ξ, ξ′ ∈ X,

where 〈·, ·〉 denotes the standard L2(C) inner product. With the assumptions on u from
above, this space becomes a Hilbert space [HH21, Lemma 2.1].
Then, the weak formulation of (0.1) reads as:
Find ξ ∈ X such that

a(ξ, ξ′) =
3∑
i=1

ai(ξ, ξ′) = 〈s, ξ′〉 for all ξ′ ∈ X, (0.2)

where we define the sesquilinear forms ai(·, ·), 1 ≤ i ≤ 3, through

a1(ξ, ξ′) := 〈ρc2
s(∇+ q) · ξ, (∇+ q) · ξ′〉 − 〈ρc2

sq · ξ,q · ξ′〉,
a2(ξ, ξ′) := −〈ρDξ,Dξ′〉+ 〈(Hess(p)− ρHess(φ)ξ, ξ′〉,
a3(ξ, ξ′) := −iργω〈ξ, ξ′〉, for ξ, ξ′ ∈ X.
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Here, for ease of notation, the differential operator D := (−iω + u · ∇+ Ω×) relating to
transport and the function q := ρ−1c−2∇p were introduced.

The following generalized Helmholtz decomposition is crucial for proving the well-posedness
of the problem.

X = V ⊕W ⊕ Z, (0.3)

where

• V ⊂ {∇v | v ∈ H2(D), ∇v · ν = 0 on ∂D} is compactly embedded in L2;

• W = {ξ ∈ X | (∇+ q) · ξ = 0};

• Z is finite dimensional.

Note that for q = 0 and Z = {0} this decomposition is the classical Helmholtz decomposi-
tion where u ∈ X is decomposed into a divergence free and a curl free function. For the
proof of the decomposition we refer to [HH21, Lemma 3.5].

This result can be used to show that the operator A induced by the bilinear form a(·, ·) is
weakly T-coercive [HH21, Theorem 3.11]. The concept of weak T-coercivity was introduced
by Halla [Hal19] and implies that the operator is Fredholm with index zero. This in turn
implies the well-posedness of the problem4.

As mentioned above, there are few similar theoretical results on these type of equations.
Consequently, there are even fewer numerical discretization schemes. We want to develop
a finite element based discretization with provable error bounds that is tailored to the
structure of this problem. Especially, the decomposition (0.3) of the continuous problem
should be transferred to the discrete case.
Assuming Z = {0} and Hess(p)− ρHess(φ) = 0, we need to consider a decomposition of
finite element spaces

Xh = Vh ⊕Wh. (0.4)

To simplify things further, we assume constant pressure such that q = 0.
From the decomposition (0.3) we have that

W = {ξ ∈ X | ∇ · ξ = 0}, (0.5)

which means that W is the divergence free subspace of X. Hence, we consider a discrete
version of this space:

Wh := {ξh ∈ Xh | ∇ · ξh = 0}. (0.6)

Further, we choose Vh = W⊥
h to be the orthogonal complement of Wh in Xh.

For the treatment of divergence-free subspaces, we are considering H(div, D)-conforming,
that is normal continuous, finite element spaces Xh, which are in general not tangential-
continuous. That means, that functions ξh ∈ Xh can be discontinuous across element
interfaces. Hence, we are aiming for a discontinuous Galerkin discretization.

4for an overview of the "Fredholm alternative" we refer to [Eva10, Chapter 6.2.3].
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This thesis deals with a sub-problem of this task under further simplifying assumptions and
thus can be viewed as a starting point for further work. We restrict to function spaces over
Rd and the standard L2-scalar product and remove all zero order terms. This eliminates
the damping term and yields D = ∂u := u · ∇. The bilinear form in the weak formulation
(0.2) becomes

a(ξ, ξ′) =
2∑
i=1

ai(ξ, ξ′) = 〈ρc2∇ · ξ,∇ · ξ〉 − 〈ρ∂uξ, ∂uξ′〉, ξ, ξ′ ∈ X. (0.7)

Now, for a discrete version of this bilinear form we consider

ah(ξh, ξ
′
h) =

2∑
i=1

aih(ξh, ξ
′
h), ξh, ξ

′
h ∈ Xh, (0.8)

where a1
h(ξh, ξ

′
h) = a1(ξh, ξh) and a2

h(·, ·) is a discrete version of a2(·, ·) that is yet to be
defined. Using the decomposition (0.3), we can split ξh = vh + wh for vh ∈ Vh, wh ∈Wh.
Choosing ξ′h = vh − wh yields

ah(ξh, ξ
′
h) = 〈ρc2∇ · vh,∇ · vh〉 − 〈ρ∂uvh, ∂uvh〉+ 〈ρ∂uwh, ∂uwh〉

= 〈ρc2∇ · vh,∇ · vh〉+ a2
h(vh, vh)︸ ︷︷ ︸

=:ãh(vh,vh)

−a2
h(wh, wh)︸ ︷︷ ︸

=:bh(wh,wh)

(0.9)

The bilinear form bh(·, ·) will be defined and analysed in this thesis. It corresponds to a
diffusion equation of the following form

−∇ · (ρ(u⊗ u)∇w) = f in D. (0.10)

To make this problem uniquely solvable, in particular to avoid a non-trivial kernel, we
add a volume term w. Further, we multiply the volume term with ρ so that both terms
scale equally in dependence of the density. This helps to avoid conditioning issues in the
numerical simulations.

Ultimately, this thesis aims to develop and analyse a Discontinuous Galerkin discretization
for the following problem:
For a given smooth velocity field u ∈ L∞(D,Rd),a sufficiently smooth density ρ : D → R>0,
and a source term f ∈ L2(D), we search for w : D → R such that

ρw −∇ · (ρ(u⊗ u)∇w) = f in D. (0.11)
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Structure of this thesis

This thesis is structured as followed:

Chapter 1 introduces the model problem and poses the continuous problem. Further, we
derive a suitable Discontinuous Galerkin discretization (DG) of (0.11). The main focus will
lie on a discrete bilinear form describing the second order operator in (0.11).

Chapter 2 focuses on a theoretical analysis of the discrete problem. We will prove coercivity
and continuity, which imply the well-posedness of the discrete problem. Then, a Ceá-type a
priori error estimate and corresponding interpolation results will be developed. Afterwards,
we will dive deeper into some specific issues, namely we will prove a non-standard inverse
inequality and investigate the stabilization term used in the DG formulation in more detail.

Chapter 3 conducts numerical experiments to test the developed method. The discretiza-
tion was implemented with the software package Netgen/NGSolve which can be found
at

https://ngsolve.org

In particular, we will study convergence rates of the errors in the L2- and an energy-like
norm and the influences of the penalization parameter and a non-constant density.

Chapter 4 summarizes the results from this thesis and gives an overview of open problems.

The appendix consisting of chapters A, B and C contains supplementary material. The first
chapter of the appendix gives a brief overview over triangulations and useful inequalities.
In the second chapter, we will present the code used to implement the method. Finally, the
last chapter contains additional plots and tables that complement the material in chapter 3.

Requirements and Notation

In order to understand this work, a basic knowledge of Finite Element Methods and the
associated concepts of functional analysis is required.
For ease of presentation, the L2-norm respectively the L2-scalar product on a domain Ω
are denoted as

‖ · ‖Ω, resp. 〈·, ·〉Ω.
We will also use the notation a . b to indicate that a is less or equal than a constant times
b, i.e.

a . b :⇔ ∃c > 0 independent of a and b s.t. a ≤ c · b. (0.12)

We will use & analogously and ' if a . b and a & b. On occasion, we will use Sobolev-
spaces Hp(Ω) and denote the corresponding Sobolev-norm as ‖ · ‖Hp(Ω).

6
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Chapter 1

Derivation of a suitable DG discretization

In this chapter, we will introduce the model problem considered in this thesis. Then, we
will pose the continuous problem and show that it is well-posed. Afterwards, we will derive
a discrete Discontinuous Galerkin formulation for the model problem.

1.1 Model problem

Let D ⊂ Rd be a bounded Lipschitz domain and u ∈ L∞(D,Rd) a smooth velocity field.
Further, let the density ρ : D → R>0 be sufficiently smooth. Then, we consider the problem:
Find w : D → R such that

ρw −∇ · (ρ(u⊗ u)∇w) = f in D,

w = 0 on ∂Din.
(1.1)

Here, with ν denoting the normal vector, we define

∂Din = ∂D ∩ {x ∈ D | u · ν 6= 0}. (1.2)

Note further, that for a, b ∈ Rd, we define the dyadic product as

a⊗ b = abT . (1.3)

Additionally, we assume that the density can be bounded from below and above:

Assumption 1.1. There exist constants ρ, ρ ∈ R>0 such that

ρ ≤ ρ(x) ≤ ρ ∀x ∈ D.

This problem is a reaction-diffusion equation. However, the diffusion operator is degen-
erative in the sense that it only acts along the velocity field u. Especially, that means that
the diffusion operator vanishes whenever u = 0. Figure 1.1a visualizes the direction of the
diffusion for a rotational velocity field. In particular, we see that there is no communication
between the two trajectories.
Furthermore, the kernel of the diffusion operator is not trivial:

ker(−∇ · (ρ(u⊗ u)∇w)) = {w ∈ L2(D) | w is constant along γx,u, x ∈ D}, (1.4)

where γx,u describes the trajectory through x along u in D. Figure 1.1b displays a non-
trivial function in the kernel of the diffusion operator for our example from above. As a
consequence of the non-trivial kernel, we need the volume term ρw to ensure that the
problem is well-posed, cf. to the more detailed discussion in section 3.5.
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1.2. The continuous setting

γu,x̃

γu,x

(a) Direction of the diffusion

u = 0

u = a ∈ R

u = b ∈ R

(b) Non-trivial function in the kernel

Figure 1.1: The direction of the diffusion along the velocity field u (left), where a green
arrow indicates that there is diffusion and a red arrow indicates that there is no diffusion,
and a function in the kernel of the diffusion operator (right).

1.2 The continuous setting

Before we derive the discrete problem, we will examine a continuous weak formulation of
(1.1). To this end, we define the following function space:

W :=
{
v ∈ L2(D) | ρ∂uv ∈ L2(D), v = 0 on ∂Din}, (1.5)

and equip it with the following norm:

|||w|||W := ‖ρ 1
2w‖D + ‖ρ 1

2∂uw‖D. (1.6)

Remark 1.1 (On the kernel of |||·|||W ). Obviously, |||·|||W satisfies absolute homogeneity and
the triangle inequality. The kernel of |||·|||W , that is {w ∈W | |||w|||W = 0}, is trivial as well:
While the second term would be zero for e.g. a constant term, the first term ensures that
|||w|||W = 0⇔ w = 0. Hence, |||·|||W defines a proper norm.

A common challenge when working with partial differential equations (PDEs) in general, is
that physical meaningful solutions might not satisfy the classical definition of a derivative.
For instance, functions that solve wave equations can have discontinuities and are not
differentiable in the classical sense. However, as we are working with variational formula-
tions, we only have to make sense of derivatives in integral equations and want to be able
to apply partial integration.

Following Halla and Hohage [HH21, Equation (16)], we define the differential operator
ρ∂u in a weak sense:

〈ρ∂uw,w′〉D := −〈ρw, ∂uw′〉D − 〈div(ρu)w,w′〉D ∀w′ ∈ C∞0 (D). (1.7)

Here, we assume that ρ∂uw ∈ L2(D).
To derive a weak formulation, we multiply (1.1) with a test function w′ ∈W and integrate
over the domain D. This yields:

〈ρw,w′〉D −
∫
D
∇ · (ρ(u⊗ u)∇w) · w′ dx. (1.8)

8



Chapter 1. Derivation of a suitable DG discretization

Now, we apply partial integration on the second term and get

〈ρw,w′〉D +

∫
D

(ρ(u⊗ u)∇w) · ∇w′ dx−
∫
∂D

(ρ(u⊗ u)∇w) · w′ν ds︸ ︷︷ ︸
=0

. (1.9)

The boundary term vanishes as w′ = 0 on ∂Din and u · ν = 0 otherwise.

Further, we note that for the dyadic product holds

a(b · c) = (a⊗ b) · c for a, b, c ∈ Rd. (1.10)

Hence, we can write the second term as:∫
D
ρ(u · ∇)w · (u · ∇)w′ dx. (1.11)

Recalling the definition ∂u· = (u · ∇)·, (1.9) becomes

〈ρw,w′〉D + 〈ρ∂uw, ∂uw′〉D =: B(w,w′). (1.12)

Altogether, we obtain the following weak formulation:
Find w ∈W such that

B(w,w′) = 〈f, w′〉D ∀w′ ∈W. (1.13)

Ultimately, the weak formulation motivates the choice of the space W , as we need w and
ρ∂uv to be square integrable.

Remark 1.2 (Symmetry of the continuous problem). At the first glance, the continuous
problem (1.13) does not appear to be symmetric. However, when one considers either the scalar
product 〈ρ·, ·〉D or splits the density such that the scalar products are given by 〈ρ 1

2 ·, ρ 1
2 ·〉D, one

quickly asserts that the problem is indeed symmetric.

We want to consider the well-posedness of the weak formulation (1.13). To this end, we
want to apply the Riesz theorem [Eva10, Appendix D, Thm. 2].

Theorem 1.1 (Riesz representation theorem). Let V be a Hilbert space and ` : V → R be a
continuous linear functional. Then, there exits a unique u` ∈ V such that

`(v) = 〈u`, v〉V (1.14)

and
‖`‖V ∗ = ‖u`‖V . (1.15)

The right-hand side of the weak formulation (1.13) is linear as a scalar product. Further-
more, it is continuous due to the Cauchy-Schwarz inequality. If we show that (W,B(·, ·)) is
a Hilbert space, theorem 1.1 yields the existence of a w ∈W such that

B(w,w′) = 〈f, w′〉D. (1.16)

The second results from Riesz’ theorem gives us the stability of the solution w, which means
that the continuous weak formulation is well-posed. The following lemma shows that W is
indeed a Hilbert space.

9



1.2. The continuous setting

Lemma 1.2. The space (W,B(·, ·)) is a Hilbert space.

Proof. The bilinear form B(·, ·) is an inner product, because by definition there is

|||w|||W =
√
B(w,w). (1.17)

To prove the claim, we have to show completeness of W with respect to the |||·|||W -norm.
Let {wn} ⊂W be a Cauchy sequence.There holds that W ⊂ L2(D) and ‖w‖D ≤ |||w|||W for
all ∈W , which means that {wn} is Cauchy in L2(D) as well. As L2(D) itself is a complete

space, there exits a w̃ ∈ L2(D) such that wn
L2(D)→ w as n→∞. To conclude the proof, we

are left with showing that w̃ ∈W and that |||wn − w̃|||W → 0.
For the former, consider (1.7) with wn: For all w′ ∈ C∞0 (D) there holds

〈ρ∂uwn, w′〉D
(1.7)
= −〈ρwn, ∂uw′〉D − 〈div(ρu)wn, w

′〉D
n→∞→ −〈ρw̃, ∂uw′〉D − 〈div(ρu)w̃, w′〉D
= 〈ρ∂uw̃, w′〉D.

(1.18)

Consequently, ρ∂uw̃ ∈ L2(D) and hence, w̃ ∈W .
For the latter, let n,m ≥ Nε where Nε stems from the Cauchy sequence property:

|||wn − wm|||W ≤ ε ∀n,m ≥ Nε. (1.19)

Now, we insert wn − wm into (1.7): For all w′ ∈ C∞0 (D) there holds

〈ρ∂u(wn − wm), w′〉D
(1.7)
= −〈ρ(wn − wm), ∂uw

′〉D − 〈div(ρu)(wn − wm), w′〉D
≤ sup

w′∈[C∞0 (D)]d,
‖w′‖D=1

−〈ρ(wn − wm), ∂uw
′〉D − 〈div(ρu)(wn − wm), w′〉D

(A.7)

≤ sup
w′∈[C∞0 (D)]d,
‖w′‖D=1

−‖ρ(wn − wm)‖D‖∂uw′‖D − ‖div(ρu)(wn − wm)‖D

≤ sup
w′∈[C∞0 (D)]d,
‖w′‖D=1

ε(−‖ρ‖D‖∂uw′‖D − ‖div(ρu)‖D)

(1.20)
For ε → 0 this expression approaches zero as all the other terms are bounded. Letting
m→∞ yields that |||wn − w̃|||W → 0.

As described above, this result automatically yields the well-posedness of the continuous
problem:

Theorem 1.3 (Well-posedness of the continuous problem). There exists a unique and stable
solution w ∈W to the continuous problem (1.13).

10



Chapter 1. Derivation of a suitable DG discretization

1.3 The discrete setting

We have posed the continuous weak formulation and shown its well-posedness. Now, we
transfer the problem to the discrete setting. Therefore, let Th be an admissible triangulation
of D that is shape-regular and quasi-uniform1.
The standard Galerkin formulation of (1.1) reads as:
Find wh ∈Wh ⊂W such that

B(wh, w
′
h) = 〈f, w′h〉D w′h ∈Wh.

However, as explained in the introduction, we aim for a DG formulation of the problem.
DG methods are non-conforming methods in the sense that the discrete functions do not
have to be continuous across element interfaces. This means, that we consider the space of
polynomials of degree k on every element T ∈ Th:

Wh := V k,d
h = {v ∈ L2(D) | v|T ∈ Pk(T ) ∀T ∈ Th}. (1.21)

In contrast to the standard Galerkin method, we have that Wh 6⊂W as the piecewise poly-
nomials can be discontinuous. Figure 1.2 visualizes the difference between approximations
with continuous and discontinuous piecewise polynomials.

Furthermore, we have to introduce a modified discrete bilinear form Bh(·, ·) as B(·, ·) is
in general not well-defined on Wh. On the one hand, we want this bilinear form to be
consistent, which means that for the true solution w there should hold

Bh(w,w′h) = 〈f, w′h〉D ∀w′h ∈Wh.

On the other hand, we also want it to provide stability, which in this case means that is
should fulfil discrete coercivity. To achieve this, we will introduce a stabilization term that
penalizes the element interface jumps of the discrete functions.

(a) Continuous Polynomials (b) Discontinuous Polynomials

Figure 1.2: L2-best-approximation of a Gaussian bump w = e−2(x2+y2) with continuous
and discontinuous linear polynomials.

It is clear at the first glance, that the discrete formulation takes the form

Bh(wh, w
′
h) = 〈ρwh, w′h〉D + bh(wh, w

′
h), (1.22)

1for details on admissible and quasi-uniform triangulations we refer to chapter A.
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1.3. The discrete setting

where bh(·, ·) is a bilinear form corresponding to the degenerated diffusion operator

−∇ · (ρ(u⊗ u)∇wh). (1.23)

In the following, we will focus on deriving this bilinear form. To do this, we first have to
introduce some notations. Let Fh denote the space of all facets of the triangulation Th, that
is

Fh = {∂T1 ∩ ∂T2 | T1 6= T2, T1, T2 ∈ Th} ∪ {∂T ∩ ∂D | T ∈ Th}.
Further, we introduce the following jump- and average operators:
For two elements T1 and T2 with a common facet F and a function wh ∈Wh we define:

• the jump of wh as JwhK := wh|T1 − wh|T2 ,

• the average of wh as {{wh}} := 1
2(wh|T1 + wh|T2).

On the boundary we define
JwK = w,

{{w}} = w.

Later on, we will use the following result:

Lemma 1.4. There holds
JuvK = {{u}}JvK + {{v}}JuK. (1.24)

Proof. Direct calculation, see [PE12, p. 123].

Now, we can derive the discrete formulation of (1.23). As in the derivation of the continuous
problem, we multiply (1.23) with a test function w′h ∈Wh and integrate over the domain
D. However, as we are aiming for a DG method, we decompose the domain into the mesh
elements and write the integral as a sum over integrals over all mesh elements:∑

T∈Th

∫
T
−∇ · (ρ(u⊗ u)∇wh) · w′h dx. (1.25)

Applying partial integration on each element T and using formula (1.10) yields∑
T∈Th

∫
T
ρ∂uwh∂uw

′
h dx+

∫
∂T

(−ρ∂uwhu) · w′hν ds. (1.26)

Now, we take a closer look at the boundary integral. First of all, we switch from the sum
over all element boundaries to the sum over all facets in the mesh. Each facet appears twice,
as two elements are always connected by one facet. Hence, using the notation uν = u · ν,
we can rewrite ∑

T∈Th

∫
∂T

(−ρ∂uwhu) · w′hν ds =
∑
F∈Fh

∫
F
uνJ−ρ∂uwhw′hK ds. (1.27)

Now, applying formula (1.24) yields∑
F∈Fh

∫
F
uν({{−ρ∂uwh}}Jw′hK + {{w′h}}J−ρ∂uwhK) ds. (1.28)

The latter term vanishes for the true solution w. Hence, it can be dropped without making
the formulation inconsistent.
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Chapter 1. Derivation of a suitable DG discretization

To solve the linear system that arises in the discretization, it is generally preferred to
preserve the symmetry of the continuous problem. Hence, we add the term∑

F∈Fh

〈uν{{−ρ∂uw′h}}, JwhK〉F . (1.29)

Note that this term is consistent as JwK = 0 for the exact solution and on the boundary.
By the choice of our method, we allow functions to be discontinuous over element interfaces.
These jumps have to be controlled in order to ensure coercivity of the formulation. To
achieve this, we introduce another term, called stabilization term. We choose a penalization
parameter λ > 0 and add: ∑

F∈Fh

〈ρλ
h
|uν |2JwhK, Jw′hK〉F . (1.30)

In section 2.2.2 we will see that this term and in particular the choice of the penalization
parameter λ is crucial for the coercivity and thus, the well-posedness of the problem.
Altogether, we propose the following discrete DG bilinear form

bh(wh, w
′
h) =

∑
T∈Th

〈ρ∂uwh, ∂uw′h〉T +
∑
F∈Fh

{
〈uν{{−ρ∂uwh}}, Jw′hK〉F

+ 〈uν{{−ρ∂uw′h}}, JwhK〉F

+ 〈ρλ
h
|uν |2JwhK, Jw′hK〉F

}
.

Then, the discrete DG formulation of problem (1.1) is:
Find wh ∈Wh = V k,d

h such that

Bh(wh, w
′
h) = 〈f, w′h〉D ∀w′h ∈Wh, (1.31)

where
Bh(wh, w

′
h) =

∑
T∈Th

〈ρwh, w′h〉T + 〈ρ∂uwh, ∂uw′h〉T

+
∑
F∈Fh

{
〈uν{{−ρ∂uwh}}, Jw′hK〉F

+ 〈uν{{−ρ∂uw′h}}, JwhK〉F

+ 〈ρλ
h
|uν |2JwhK, Jw′hK〉F

}
.

(1.32)

Remark 1.3 (On non-homogeneous Dirichlet boundary conditions). In this section we
have only considered homogeneous Dirichlet boundary conditions. If we consider boundary
conditions of the form

w = g on ∂Din, (1.33)

the right-hand side of (1.31) has to be modified. We will do this for the example problem for
the numerical experiments in (3.2).
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Chapter 2

Analysis of the discrete problem

In this chapter, we will present a theoretical analysis of the method derived in the previous
chapter. We will follow a classical structure by proving consistency, coercivity and continuity,
which yields the well-posedness of the discrete problem. With the help of these results, we
will present an a priori error bound and corresponding interpolation results. Finally, we
will investigate one crucial tool in the analysis, the inverse inequality and the stabilization
mechanism, in more detail.

2.1 Preliminaries

The solution of the discrete problem does not need to be continuous, so we cannot use the
H1(D)-norm for the analysis. Instead, we introduce two discrete norms, which allow us to
show the well-posedness of the discrete problem.
To show coercivity, we introduce the ‖ · ‖ρ-norm defined through

‖wh‖2ρ :=
∑
T∈Th

{
‖ρ 1

2wh‖2T + ‖ρ 1
2∂uwh‖2T + h−1|uν |2‖ρ

1
2 JwhK‖2∂T

}
, ∀wh ∈Wh. (2.1)

For continuity however, we need a stronger norm:

‖wh‖2ρ,∗ := ‖wh‖2ρ +
∑
T∈Th

h‖ρ 1
2∂uwh‖2∂T , ∀wh ∈Wh. (2.2)

Both are indeed norms: the triangle inequality and absolute homogeneity are inherited
from the L2-norm and the kernel of both norms is trivial, since the first term ensures that
the norm is only zero when ‖wh‖T = 0, which is only the case if wh = 0.

Further, we need a non-standard inverse inequality for the proof of coercivity. As of now,
we will assume that this inequality holds. A more detailed discussion including a proof can
be found in section 2.5.

Assumption 2.1. There exists a constant ctr > 0 such that for all wh ∈ Pk(T ) holds:

h‖ρ 1
2∂uwh‖2∂T ≤ c2

tr‖ρ
1
2∂uwh‖2T . (2.3)

As a consequence of this inequality, the norms defined above are equivalent for wh ∈Wh.
There holds

0 ≤ ‖wh‖2ρ,∗ − ‖wh‖2ρ =
∑
T∈Th

h‖ρ 1
2∂uwh‖2∂T ≤

∑
T∈Th

c2
tr‖ρ

1
2∂uwh‖2T ≤ c2

tr‖wh‖2ρ,

14



Chapter 2. Analysis of the discrete problem

which implies that
1√

1 + c2
tr
‖wh‖ρ,∗ ≤ ‖wh‖ρ ≤ ‖wh‖ρ,∗.

This equivalence will allow us to show coercivity in the ‖ · ‖ρ- and continuity in the ‖ · ‖ρ,∗-
norm.

Recall (1.22), i.e. that we denote

Bh(wh, w
′
h) = 〈ρwh, w′h〉D + bh(wh, w

′
h). (2.4)

2.2 Well-posedness of the discrete problem

2.2.1 Consistency

A direct consequence of the derivation in chapter 1 is consistency, mainly due to the fact
that JwK = 0 for the exact solution w ∈W :

Corollary 2.1 (Consistency). The bilinearform Bh(·, ·) is consistent, i.e. for the exact solution
w ∈W of (0.11) holds that

Bh(w,w′h) = 〈f, w′h〉D ∀w′h ∈Wh (2.5)

Let us quickly note that this condition is equivalent to Galerkin orthogonality as

Bh(w − wh, w′h) = 0⇔ Bh(w,w′h) = 〈f, w′h〉D = Bh(wh, w
′
h), (2.6)

for the exact solution w, the discrete solution wh and for all w′h ∈Wh. This result is useful
for the proof of a Ceá-type error estimate that can be found in section 2.3.

2.2.2 Coercivity

While consistency is a direct consequence of the derivation of the method, proving the
coercivity of the bilinear form Bh(·, ·) requires a bit more effort. In particular, we will apply
the Cauchy-Schwarz- and Young’s inequalities that can be found in chapter A.

Proposition 2.2 (Coercivity). For all wh ∈Wh and λ sufficiently large, there holds that

Bh(wh, wh) ≥ 1

2
‖wh‖2ρ ≥ αBh‖wh‖2ρ,∗, (2.7)

with αBh ∈ R independent of the mesh size h.

Proof. The proof relies on the Cauchy-Schwarz and Young’s inequalities, cf. (A.7) and
(A.9). Furthermore, we require the inverse inequality (2.3). Let wh ∈ Wh be arbitrary.
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2.2. Well-posedness of the discrete problem

Then, there holds

Bh(wh, wh) =
∑
T∈Th

{
‖ρ 1

2wh‖2T + ‖ρ 1
2∂uwh‖2T

}
+
∑
F∈Fh

{
2〈uν{{−ρ∂uwh}}, JwhK〉F +

λ

h
|uν |2‖ρ

1
2 JwhK‖2F

}
≥
∑
T∈Th

{
‖ρ 1

2wh‖2T + ‖ρ 1
2∂uwh‖2T

− 2〈uν |ρ∂uwh|, |JwhK|〉∂T +
λ

2h
|uν |2‖ρ

1
2 JwhK‖2∂T

}
(A.7)

≥
∑
T∈Th

{
‖ρ 1

2wh‖2T + ‖ρ 1
2∂uwh‖2T

− 2|uν |‖ρ
1
2∂uwh‖∂T ‖ρ

1
2 JwhK‖∂T +

λ

2h
|uν |2‖ρ

1
2 JwhK‖2∂T

}
(2.3)

≥
∑
T∈Th

{
‖wh‖2T + ‖ρ 1

2∂uwh‖2T

− 2|uν |ctrh
− 1

2 ‖ρ 1
2∂uwh‖T ‖ρ

1
2 JwhK‖∂T +

λ

2h
|uν |2‖ρ

1
2 JwhK‖2∂T

}
(A.9)

≥
∑
T∈Th

{
‖ρ 1

2wh‖2T + ‖ρ 1
2∂uwh‖2T

− 1

2
‖ρ 1

2∂uwh‖2T −
2c2

tr

h
|uν |2‖ρ

1
2 JwhK‖2∂T +

λ

2h
|uν |2‖ρ

1
2 JwhK‖2∂T

}
≥
∑
T∈Th

{1

2
‖ρ 1

2wh‖2T +
1

2
‖ρ 1

2∂uwh‖2T + h−1|uν |2(
λ

2
− 2c2

tr)‖ρ
1
2 JwhK‖2∂T

}
≥ min(

1

2
,
λ

2
− 2c2

tr)‖wh‖2ρ

≥ 1

2
‖wh‖2ρ

(2.8)

for λ ≥ 1 + 4c2
tr. The first inequality stems from the fact that each facet appears twice

in the sum over all element boundaries and that we can bound the average, that is half
a contribution from one element and its neighbour, by the full contribution from both
elements. As the ‖ · ‖ρ- and the ‖ · ‖ρ,∗-norms are equivalent, the second inequality holds
with constant αBh = 1

2
√

1+c2tr
.

Remark 2.1. While the assumption on the stabilization parameter λ is crucial for coercivity,
it can be problematic. We will explore this issue in more detail in section 2.6.

2.2.3 Continuity

Having shown coercivity, we will now prove that the bilinear form Bh(·, ·) is continuous
with respect to the ‖ ·‖ρ,∗-norm. To this end, we will again make use of the Cauchy-Schwarz
inequality.

Proposition 2.3. For w,w′ ∈W∗ := W +Wh there holds that

Bh(w,w′) ≤ βBh‖w‖ρ,∗‖w′‖ρ,∗ (2.9)
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Chapter 2. Analysis of the discrete problem

for βBh > 0 independent of h.

Proof. Similarly to the proof of coercivity, we will first switch from the sum over all facets
to the sum over all elements. Then, we will apply both variants of the Cauchy-Schwarz
inequality in lemma A.3. For w,w′ ∈W +Wh, there holds:

Bh(w,w′) =
∑
T∈Th

{
〈ρw,w′〉T + 〈ρ 1

2∂uw, ρ
1
2∂uw

′〉T
}

+
∑
F∈Fh

{
〈uν{{−ρ∂uw}}, Jw′K〉F

+ 〈uν{{−ρ∂uw′}}, JwK〉F +
λ

h
|uν |2〈ρ

1
2 JwK, ρ

1
2 Jw′K〉F

}
≤
∑
T∈Th

{
〈ρw,w′〉T + 〈ρ 1

2∂uw, ρ
1
2∂uw

′〉T + 〈uν |ρ∂uw|, |Jw′K|〉∂T

+ 〈uν |ρ∂uw′|, |JwK|〉∂T +
λ

2h
|uν |2〈ρ

1
2 JwK, ρ

1
2 Jw′K〉∂T

}
(A.7)

≤
∑
T∈Th

{
‖ρ 1

2w‖T ‖ρ
1
2w′‖T + ‖ρ 1

2∂uw‖T ‖ρ
1
2∂uw

′‖T

+ |uν |‖ρ
1
2∂uw‖∂T ‖ρ

1
2 Jw′K‖∂T + |uν |‖ρ

1
2∂uw

′‖∂T ‖ρ
1
2 JwK‖∂T

+
λ

2h
|uν |2‖ρ

1
2 JwK‖∂T ‖ρ

1
2 Jw′K‖∂T

}
(A.8)

≤
∑
T∈Th

{(
‖ρ 1

2w‖2T + ‖ρ 1
2∂uw‖2T + h‖ρ 1

2∂uw‖2∂T

+ h−1|uν |2‖ρ
1
2 JwK‖2∂T +

λ

2h
|uν |2‖ρ

1
2 JwK‖2∂T

) 1
2

·
(
‖ρ 1

2w′‖2T + ‖ρ 1
2∂uw

′‖2T + h‖ρ 1
2∂uw

′‖2∂T

+ h−1|uν |2‖ρ
1
2 Jw′K‖2∂T +

λ

2h
|uν |2‖ρ

1
2 Jw′K‖2∂T

) 1
2
}

(A.8)

≤
( ∑
T∈Th

{
‖ρ 1

2w‖2T + ‖ρ 1
2∂uw‖2T + h‖ρ 1

2∂uw‖2∂T

+ h−1|uν |2‖ρ
1
2 JwK‖2∂T +

λ

2h
|uν |2‖ρ

1
2 JwK‖2∂T

}) 1
2

·
( ∑
T∈Th

{
‖ρ 1

2w′‖2T + ‖ρ 1
2∂uw

′‖2T + h‖ρ 1
2∂u‖2∂T

+ h−1|uν |2‖ρ
1
2 Jw′K‖2∂T +

λ

2h
|uν |2‖ρ

1
2 Jw′K‖2∂T

}) 1
2

≤ βBh‖w‖ρ,∗‖w′‖ρ,∗
(2.10)

for βBh = 1 + λ
2 .

With these results, we can show the well-posedness of the discrete problem:

Theorem 2.4 (Well-posedness of the discrete problem). There exists a unique solution to
the discrete problem: Find wh ∈Wh such that

Bh(wh, w
′
h) = 〈f, w′h〉D ∀w′h ∈Wh. (2.11)

Further, this solution admits the following stability estimate

‖wh‖ρ ≤
1

αBhρ
‖f‖D. (2.12)
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2.3. A priori error estimates

Proof. We have shown that the discrete bilinear form Bh(·, ·) is coercive and continuous.
Furthermore, the right-hand side of the discrete problem (1.31) is not only linear, but also
bounded due to the Cauchy-Schwarz inequality. As such, we can apply the Lax-Milgram
lemma [Eva10, Chapter 6 Theorem 1] to conclude the existence of a unique solution
wh ∈Wh to the discrete problem.
The stability of the solution follows directly:

‖wh‖ρ ≤ αBh Bh(wh, wh)︸ ︷︷ ︸
〈f,wh〉D

≤ αBh‖f‖D ‖wh‖D︸ ︷︷ ︸
≤ρ−1‖wh‖ρ

≤ 1

αBhρ
‖f‖D. (2.13)

2.3 A priori error estimates

In theorem 2.4 we argued that coercivity and continuity imply the existence of a unique
solution wh ∈Wh. Now, we want to derive a Ceá-type estimate on the approximation error
‖w − wh‖ρ, where w ∈W denotes the exact solution to the problem.

Proposition 2.5. Let w ∈ W be the exact solution to (0.11) and wh ∈ Wh be the discrete
solution to the problem: Find wh ∈Wh such that

Bh(wh, w
′
h) = 〈f, w′h〉D ∀w′h ∈Wh.

Then, there holds

‖w − wh‖ρ ≤ ‖w − wh‖ρ,∗ ≤ C inf
vh∈Wh

‖w − vh‖ρ,∗, (2.14)

with a constant C independent of h.

Proof. The first inequality simply holds true by construction of the ‖·‖ρ- and the ‖·‖ρ,∗-norm.
Further, for any vh ∈Wh the triangle inequality yields

‖w − wh‖ρ,∗ ≤ ‖w − vh‖ρ,∗ + ‖vh − wh‖ρ,∗. (2.15)

In the following, we will bound the discrete error ‖vh − wh‖ρ,∗ by the approximation error
‖w−vh‖ρ,∗ using the coercivity, the Galerkin orthogonality and the continuity of the bilinear
form Bh(·, ·). We have

‖vh − wh‖2ρ,∗
(2.7)

≤ 1

αBh
Bh(vh − wh, vh − wh)

(2.6)
=

1

αBh

(
Bh(vh − w, vh − wh) + Bh(w − wh, vh − wh)︸ ︷︷ ︸

= 0, as vh−wh∈Wh

)
(2.9)

≤ βBh
αBh
‖vh − w‖ρ,∗‖vh − wh‖ρ,∗.

(2.16)

Dividing by ‖vh − wh‖ρ,∗ yields

‖vh − wh‖ρ,∗ ≤
βBh
αBh
‖w − vh‖ρ,∗. (2.17)
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Chapter 2. Analysis of the discrete problem

Inserting this estimate into (2.15) gives us

‖w − wh‖ρ,∗ ≤
(

1 +
βBh
αBh

)
‖w − vh‖ρ,∗. (2.18)

As vh ∈Wh was chosen arbitrary, we can take the infimum over all vh ∈Wh and conclude

‖w − wh‖ρ,∗ ≤ C inf
vh∈Wh

‖w − vh‖ρ,∗, (2.19)

where C = 1+
βBh
αBh

. We note that the constants αBh and βBh only depend on the stabilization
parameter λ and the constant ctr from the inverse inequality.

2.4 Interpolation estimates

The following section is dedicated to a typical bound on the approximation error in the
H l(D)-norm, l ≥ 2. To this end, we will assume that the exact solution is sufficiently
regular, i.e. w ∈W ∩H l(D) and apply standard interpolation results.
Let us introduce the L2-projection Πh : L2(D)→Wh defined through

〈Πhw, vh〉D = 〈w, vh〉D ∀vh ∈Wh. (2.20)

When restricting to a mesh element T ∈ Th ,we obtain

〈Πhw|T , vh〉T = 〈w, vh〉T ∀vh ∈Wh. (2.21)

Hence, we can make sense of the L2-projection element-wise.
For the proof of an H l-norm error estimate, we will make use of the following standard
interpolation results:

Lemma 2.6. Let v ∈ Hs(D) for s ∈ {2, . . . k + 1} where k is the polynomial degree. Further,
let m ≤ s. Then, there holds

|v −Πhv|Hm(T ) . hs−m|v|Hs(T ); (2.22)

‖v −Πhv‖F . hs−
1
2 |v|Hs(T ); (2.23)

‖∇(v −Πhv)‖F . hs−
3
2 |v|Hs(T ). (2.24)

Proof. The proof follows standard arguments and can be found in [PE12, Lemmata 1.58
and 1.59].

Now, we can show the following result, which will give us a standard convergence rate.

Proposition 2.7 (H l-norm error estimate). Let w ∈ H l(D) for 2 ≤ l ≤ k + 1. Then, there
holds

inf
vh∈Wh

‖w − vh‖ρ,∗ . ρ̄
1
2hl−1‖w‖Hl(D), (2.25)

where the implied constants do not depend on ρ.

Proof. There holds for any arbitrary vh ∈Wh that

inf
vh∈Wh

‖w − vh‖ρ,∗ ≤ ‖w − vh‖ρ,∗.
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Denoting w̃ = w − vh, there is

‖w̃‖2ρ,∗ =
∑
T∈Th

{
‖ρ 1

2 w̃‖2T + ‖ρ 1
2∂uw̃‖2T + h−1|uν |2‖ρ

1
2 Jw̃K‖2∂T + h‖ρ 1

2∂uw̃‖2∂T
}

(2.26)

In order to get the desired result, we will choose vh = Πhw and use the interpolation results
from lemma 2.6 to bound each term in the ‖ · ‖ρ,∗-norm.
For the first one, (2.22) with m = 0 directly yields

‖ρ 1
2 w̃‖2T . ρ̄h2l‖w‖2Hl(T ). (2.27)

The same result can be applied with m = 1 to bound the second term in the following way

‖ρ 1
2∂uw̃‖2T ≤ ρ̄‖u‖2∞‖∇w̃‖2T . ρ̄‖u‖2∞h2l−2‖w‖2Hl(T ). (2.28)

Here, we use that by assumption (1.1) there exists a constant ρ such that ρ(x) ≤ ρ for all
x ∈ D. For the third term, we simply replace the jump of w̃ by just w̃ on the boundary and
use (2.23) to get

‖ρ 1
2 Jw̃K‖2∂T . ρ̄‖w̃‖2∂T . ρ̄h2l−1‖w‖2Hl(T ). (2.29)

Finally, using (2.24) the last term can be bounded in the following way:

‖ρ 1
2∂uw̃‖2∂T . ρ̄‖u‖2∞‖∇w̃‖2∂T . ρ̄‖u‖2∞h2l−3‖w‖2Hl(T ). (2.30)

Putting this all together, we obtain

‖w̃‖2ρ,∗ .
∑
T∈Th

{
ρ̄h2l‖w‖2Hl(T ) + 3ρ̄‖u‖2∞h2l−2‖w‖2Hl(T )

}
(2.31)

Taking the square root, and using the fact that hl . hl−1, we arrive at

‖w̃‖ρ,∗ . ρ̄
1
2hl−1‖w‖Hl(D). (2.32)

By combining this result with (2.14,) we get that

‖w − wh‖ρ,∗ . ρ̄
1
2hl−1‖w‖Hl(D) (2.33)

for a sufficiently smooth solution w ∈ H l(D), l ≥ 2. This result implies that for w ∈
Hk+1(D), the discrete solution converges to the exact solution with order k.

Remark 2.2 (On the regularity assumptions on w). Functions in the space W do not have to
fulfil the regularity assumptions. The differential operator ∂u only acts along the velocity field,
so that functions in W might not have higher regularity than L2 in directions orthogonal to
the velocity field. As such, even as functions w ∈W fulfil ρ∂uw ∈ L2(D), they might not have
enough regularity to apply proposition 2.7.

Remark 2.3 (On L2-error estimates). Using a broken version of the Poincaré-inequality, we
can show that for w ∈W ∩Hk+1(D)

‖w − wh‖D ≤ ρ−
1
2 ‖w − wh‖ρ,∗ . ρ−

1
2 ρ̄

1
2hk‖w‖Hk+1(D). (2.34)
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Chapter 2. Analysis of the discrete problem

However, this estimate is suboptimal, and usually it can be improved. With the help of a
duality argument, one can show that

‖w − wh‖D . h‖w − wh‖ρ,∗. (2.35)

To do this, one requires the problem to be L2-H2-regular. This means that for the solution of
the dual problem, which is in our case the same as the primal problem due to symmetry, there
should hold that ‖v‖H2(D) . ‖f̃‖D. Usually, second order derivatives have a smoothing effect
that allows to apply such an argumentation. However, similar as in remark 2.2, where we
argued that functions in W do not have to fulfil higher regularity assumption, this is not the
case here. As the diffusion operator only acts along the velocity field, there is no smoothing
effect in directions orthogonal to the velocity field. Hence, we cannot apply a duality argument
yielding improved rates of convergence in the L2-norm.

2.5 On the inverse inequality

Having concluded the standard error analysis, we now want to dive deeper into some
specific issues, starting with the inverse inequality. Our non-standard inverse inequality
(2.3) is a crucial ingredient in the proof of coercivity, as we need to choose the stabilization
parameter λ sufficiently large in relation to the constant ctr arising there.
Consequently, the constant in the a-priori error estimate depends on this constant as well:

C = 1 +
βBh
αBh

= 1 +
1 + λ

2
1

2
√

1+c2tr

= 1 + (2 + λ)
√

1 + c2
tr. (2.36)

To ensure stability, we need to choose λ ≥ 1 + 4c2
tr and hence

C ≥ 1 + (3 + 4c2
tr)
√

1 + c2
tr. (2.37)

This expression gets large, if ctr is large, which means that the constant in the a-priori
error estimate increases with the constant in the inverse inequality. Hence, it seems to be
reasonable to investigate how the constant ctr behaves in dependence of the density, the
polynomial degree and the shape regularity of the mesh Th.
To this end, we will prove assumption 2.1.

Proposition 2.8. For any wh ∈ Pk(T ) there holds

h‖ρ 1
2∂uwh‖2∂T ≤ c2

tr‖ρ
1
2∂uwh‖2T ,

where ctr depends on the shape regularity, the polynomial degree k and on the density ρ,
specifically on max ρ|T

min ρ|T .

Proof. To prove the inverse inequality, we will make use of the results given in section A.1.
Let T ∈ Th be an arbitrary mesh element and F ∈ ∂T one of its facets. According to Lemma
A.1, there exists a bijective affine mapping Φ : T̂ → T such that Φ(F̂ ) = F for a facet F̂
of the reference simplex T̂ in Rd. For a polynomial wT ∈ Pk(T ) we denote ŵT = wT ◦ Φ.
There holds the following transformation rule∫

F
wT ds =

∫
F̂
JŵT ds, (2.38)

21



2.5. On the inverse inequality

where J =
√

det(DΦDΦT ). Especially, we have that

|J | . hd−1
F . hd−1

T , (2.39)

where hF is the length of the facet F , hT the size of an element T and d the dimension.
Due to the assumption of quasi-uniformity, we have that hT ' h. In the following, we will
denote ρ̂ = ρ ◦ Φ, û = DΦ−1(u ◦ Φ) and

∂̂û· = (û · ∇̂)· = (u ◦ Φ)T (DΦ−T )(DΦ)T (∇ ◦ Φ) · .

Then, there holds

‖ρ 1
2∂uwT ‖2F =

∫
F

(ρ
1
2∂uwT )2 ds

(2.38)
=

∫
F̂
J · (ρ 1

2∂uwT )2 ◦ Φ ds

=

∫
F̂
J · (ρ̂ 1

2 ∂̂ûŵT )2 ds . hd−1
T ‖ρ̂ 1

2 ∂̂ûŵT ‖2F̂
(2.40)

Now, we want to apply Lemma A.2. In particular, we use equation (A.5), which states that

|û|
Hm(T̂ )

.
(hT
ρ
T̂

)m
ρ
− d

2
T |u|Hm(T ).

For ease of presentation, we will denote f̂ := ρ̂
1
2 ∂̂ûŵT and f := ρ

1
2∂uwT . There holds:

hd−1
T ‖f̂‖2

F̂
. hd−1

T ‖f̂‖2
∂T̂

. hd−1
T ‖f̂‖2

H1(T̂ )

' hd−1
T

(
‖f̂‖2

T̂
+ |f̂ |2

H1(T̂ )

)
(A.5)

. hd−1
T

(
ρ−dT ‖f‖2T +

(hT
ρ
T̂

)2
ρ−dT |f |2H1(T )

) (2.41)

The second step uses the equivalence of norms on finite dimensional spaces. We note that
the constants implied in the . depend on ρ, in particular on

(
max(rho|T

min ρ|T

)
.

In the last step, we apply equations (A.5) with m = 0 for the first term and with m = 1
for the second term. For the next steps, we note that by definition 1

ρT
= σT

hT
. Due to shape

regularity, we have that σT ≤ σ for some constant σ. Hence, we can pull the σ into the
constant implied by .. As we are on the reference element, we can do the same for 1

ρ
T̂

.
Hence, we get

hd−1
T

(
ρ−dT ‖f‖2T +

(hT
ρ
T̂

)2
ρ−dT |f |2H1(T )

)
. hd−1

T

((σT
hT

)d
‖f‖2T +

(hT
ρ
T̂

)2(σT
hT

)d
|f |2H1(T )

)
. h−1

T

(
‖f‖2T + h2

T |f |2H1(T )

)
.

(2.42)

To conclude, we have to show that

h−1
T

(
‖f‖2T + h2

T |f |2H1(T )

)
. h−1

T ‖f‖2T .

To this end, we will use the second result from lemma A.2, equation (A.6), which states

|u|Hm(T ) .
(h

T̂

ρT

)m
h
d
2
T |û|Hm(T̂ )

.
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Chapter 2. Analysis of the discrete problem

Again, we use equivalence of norms and that we can bound σT ≤ σ. Furthermore, note
that h

T̂
can be bounded as well. There holds

‖f‖H1(T )

(A.6)

.
(h

T̂

ρT

)
h
d
2
T ‖f‖H1(T ) .

(h
T̂

ρT

)
h
d
2
T ‖f̂‖T̂

. h
T̂

(σT
hT

)
h
d
2
T ‖f̂‖T̂

(A.5)

. h
T̂

(σT
hT

)
h
d
2
T

−d
2
ρT︸︷︷︸

=
hT
σT

‖f‖T

. h−1
T h

d
2
Th
−d
2
T︸ ︷︷ ︸

=1

‖f‖T . h−1
T ‖f‖T .

(2.43)

Since we assume quasi uniformity, we have that hT ' h and thus

h‖ρ 1
2∂uwT ‖2F ≤ c2

tr‖ρ
1
2∂uwh‖2T . (2.44)

Summing over all F ∈ ∂T yields (2.3).
Note that the constant ctr usually depends on the shape regularity and the polynomial
degree k [WH03]. In particular, we have that ctr ∼ k2. Furthermore, as ρ can be non-
constant, we have a dependence on ρ stemming from the equivalence of norms as well.

2.6 On refined penalization

Until now, we have noted mainly two facts about the stabilization term and the correspond-
ing choice of a penalization parameter λ:

• the term exerts control over the jumps across element interfaces,

• λ has to be chosen large enough, so that the problem is well-posed.

Figure 2.1, which shows a discrete solution of the example problem from chapter 3 for
two different penalization parameters, visualizes the first effect. Regarding the second
point, we know, from the proof of proposition 2.2, that choosing λ ≥ 1 + 4c2

tr is sufficient
to ensure the coercivity of the problem. Note, however, that this analysis might not be sharp.

One major drawback of symmetric interior penalty methods in general is caused by the
stabilization term: the condition number of the matrices arising in the linear systems
depend on the penalization parameter [Cas02]. As such, choosing a suitable penalization
parameter might not be a trivial task. On the one hand, λ has to be large enough to ensure
coercivity, but on the other hand, choosing λ too large will have a negative impact on the
condition number.
In practice, one often tries out different order of magnitudes, that is λ = 1, 10, 100, . . . ,
and compares how well the method performs. If one encounters issues with the choice
of the penalization parameter, several remedies can be applied. In the following, we will
present two possibilities to fine-tune the usage of the penalization: a generalized eigenvalue
problem and a Bassi-Rebay type stabilization.

2.6.1 Generalized eigenvalue problem

One straightforward approach is to make sure that we choose the stabilization parameter
as close to the necessary minimum as possible, cf. [Leh21, Section 14.1.6]. Formally, this
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2.6. On refined penalization

(a) Discrete solution with λ = 3 (b) Discrete solution with λ = 20

Figure 2.1: Solution of the example problem (3.3) for k = 1 with λ = 3 (left) and λ = 20
(right).

means that we have to solve the following generalized element-local eigenvalue problem:
Find wT ∈ Pk(T )\R and µ ∈ R such that

B(wT , vT ) = µC(wT , vT ) ∀vT ∈ Pk(T ), (2.45)

where B(w, v) := h〈ρ 1
2∂uw, ρ

1
2∂uv〉∂T and C(w, v) = 〈ρ 1

2∂uw, ρ
1
2∂uv〉T .

Then, with defining

λ∗T = 8 · µmax = 8 · max
wT∈Pk(T )\R

B(wT , wT )

C(wT , wT )
= 8 · max

wT∈Pk(T )\R

‖ρ 1
2∂uwT ‖2∂Th
‖ρ 1

2∂uwT ‖2T
(2.46)

and choosing λT ≥ λ∗T , we automatically get that

〈uν |ρ∂uwh|, |JwhK|〉∂T
(A.7)

≤ |uν |‖ρ
1
2∂uwh · ν‖∂T ‖ρ

1
2 JwhK‖∂T

≤ |uν |‖ρ
1
2∂uwh‖T ‖

√
ρλT8
h

JwhK‖∂T .
(2.47)

With this bound, we can circumvent the use of the inverse inequality in the proof of
coercivity and thus get coercivity independent of the constant from the inverse inequality.

We define the following discrete norm depending on λT :

‖wh‖2ρ,λT =
∑
T∈Th

{
‖ρ 1

2wh‖2T + ‖ρ 1
2∂uwh‖2T + h−1|uν |2

λT
2
‖ρ 1

2 JwhK‖2∂T
}
. (2.48)

Now, we can show coercivity of Bh(·, ·) with respect to this modified norm for all λT ≥ λ∗T .

Lemma 2.9. There holds for all λT ≥ λ∗T that

Bh(wh, wh) ≥ 1

2
‖wh‖2ρ,λT . (2.49)
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Proof. Following a similar argumentation as in the proof of proposition 2.2 with the
additional use of (2.47) we get that

Bh(wh, wh) ≥
∑
T∈Th

{
‖ρ 1

2wh‖2T + ‖ρ 1
2∂uwh‖2T

− 2〈uν |ρ∂uwh|, |JwhK|〉∂T +
λT
2h
|uν |2‖ρ

1
2 JwhK‖2∂T

}
(2.47)

≥
∑
T∈Th

{
‖ρ 1

2wh‖2T + ‖ρ 1
2∂uwh‖2T

− 2|uν |‖ρ
1
2∂uwh‖T ‖

√
ρλT8
h

JwhK‖∂T +
λT
2h
|uν |2‖ρ

1
2 JwhK‖2∂T

}
(A.9)

≥
∑
T∈Th

{
‖ρ 1

2wh‖2T + ‖ρ 1
2∂uwh‖2T

− 1

2
‖ρ 1

2∂uwh‖2T − 2|uν |2‖

√
ρλT8
h

JwhK‖2∂T +
λT
2h
|uν |2‖ρ

1
2 JwhK‖2∂T

}
≥
∑
T∈Th

{1

2
‖ρ 1

2wh‖2T +
1

2
‖ρ 1

2∂uwh‖2T

+ h−1|uν |2
(
− 2λT

8
+
λT
2

)
︸ ︷︷ ︸

= 1
4
λT

‖ρ 1
2 JwhK‖2∂T

}

≥ 1

2
‖wh‖2ρ,λT .

(2.50)

Let us stress, again, that this result does not depend directly on the constant from the
inverse inequality. Further, we note that we can modify the norm for continuity in a similar
way:

‖wh‖2ρ,λT ,∗ = ‖wh‖2ρ,λT +
∑
T∈Th

h‖ρ 1
2∂uwh‖2∂T , (2.51)

and proceed analogously with an a-priori error analysis as before.

Remark 2.4. The prefactor in the definition of λ∗T can be chosen differently. Let m > 4 and
λ∗T = m · µmax. Then the estimate (2.47) reads as follows:

〈uν |ρ∂uwh|, |JwhK|〉∂T ≤ |uν |‖ρ
1
2∂uwh‖T ‖

√
ρλTm
h

JwhK‖∂T .

We can than show coercivity as above simply by modifying the norm:

‖wh‖2ρ,λT ;m =
∑
T∈Th

{
‖ρ 1

2wh‖2T + ‖ρ 1
2∂uwh‖2T + h−1|uν |2

(m− 4)λT
m

‖ρ 1
2 JwhK‖2∂T

}
.

However, the coercivity constant may become smaller than 1
2 .
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2.6. On refined penalization

2.6.2 Bassi-Rebay type stabilization

While the main idea of the generalized eigenvalue problem is choosing λ as small as possible,
but still large enough to ensure coercivity, there are more sophisticated approaches. One of
them is the Bassi-Rebay (BR) stabilization introduced by Bassi and Rebay [BR97], which
we will briefly derive for our problem in this section.
To avoid using the inverse inequality directly, the BR-stabilization introduces a lifting
operator, allowing us to write the facets integrals as volume integrals. For w′h ∈ L2(Fh) we
define such a lifting operator r : L2(Fh)→

[
V k,d
h

]d through:∑
T∈Th

〈ρu · τh, u · r(w′h)〉T =
∑
F∈Fh

〈uν{{ρu · τh}}, w′h〉F ∀τh ∈
[
V k,d
h

]d
. (2.52)

Without the stabilization term, the bilinear form bh(·, ·) reads as∑
T∈Th

〈ρ∂uwh, ∂uw′h〉T +
∑
F∈Fh

{
〈uν{{−ρ∂uwh}}, Jw′hK〉F

+ 〈uν{{−ρ∂uw′h}}, JwhK〉F
}
.

(2.53)

The lifting operator allows us to rewrite the facet terms as integrals over the elements

−
∑
F∈Fh

〈uν{{ρ∂uwh}}, Jw′hK〉F
τh=∇wh= −

∑
T∈Th

〈ρ u · ∇wh︸ ︷︷ ︸
=∂uwh

, u · r(Jw′hK)〉T . (2.54)

Hence, (2.53) becomes∑
T∈Th

〈ρ∂uwh, ∂uw′h〉T − 〈ρ∂uwh, u · r(Jw′hK)〉T − 〈ρ∂uw′h, u · r(JwhK)〉T

=
∑
T∈Th

〈ρ(∂uwh − u · r(JwhK)), ∂uw′h − u · r(Jw′hK)〉T − 〈ρu · r(JwhK), u · r(Jw′hK)〉T
(2.55)

To avoid stability issues, we compensate for the last term. This yields

bBRh (wh, w
′
h) =

∑
T∈Th

{
〈ρ(∂uwh − u · r(JwhK)), ∂uw′h − u · r(Jw′hK)〉T

+ η〈ρu · r(JwhK), u · r(Jw′hK)〉T
}
,

(2.56)

for a user dependent parameter η > 1 that assures non-negativity. Altogether, a BR-
stabilized formulation of (1.31) reads as

BBR(wh, w
′
h) =

∑
T∈Th

〈ρwh, w′h〉T + bBRh (wh, w
′
h). (2.57)

Defining a suitable norm, we can show coercivity in the usual way. We omit the details
and refer to [PE12, Section 5.3.2]. Let us stress again, that we avoid using the inverse
inequality directly and do not need to choose λ large enough to ensure coercivity. As such,
we can avoid the conditioning issues described above.
Note, that in general both approaches, a generalized eigenvalue problem and a BR-
stabilization, are also advantageous for large ratios max ρ|T

min ρ|T as the penalization parameter
has to be adjusted to ρ.

Remark 2.5 (Computational costs). It has to be mentioned that both modifications come
with additional computational costs. In the first case, they are associated with solving the
generalized eigenvalue problems. However, due to their local character, these computations are
of small dimension and can be parallelized. For the second modification, the implementation
of the lifting operator causes the additional computational costs.
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Chapter 3

Numerical experiments

In this chapter, we will investigate how the method performs numerically. We will consider
the influence that the mesh has on the convergence rates in the L2-norm, if the numerically
observed convergence rates in the W -norm agree with the result from proposition 2.7 and
how the penalization parameter influences the condition number. Furthermore, we use a
numerical example to show that the volume term is important for well-posedness of the
considered model problem. Finally, we test the method with a non-constant density ρ.
Note that we refer repeatedly to the appendix, in particular to chapter B where the code is
display and to chapter C where some additional figures and tables can be found.

3.1 Description of the example problem

The example problem that we want to consider in this section is two dimensional. For the
geometry we choose a square D = [−1, 1]2 ⊂ R2. We want to approximate the following
exact solution:

w := exp(−6((x+ 0.5)2 + y2))− exp(−6((x− 0.5)2 + y2)). (3.1)

This function is smooth and has two Gaussian bumps. It is displayed in figure 3.1. We
note that this exact solution does not have a physical meaning, but is chosen only for
investigating the behaviour of the discretization.

In contrast to the analysis in chapter 2, the Dirichlet boundary condition are not homoge-
neous for the exact solution. Hence, we have to modify the right-hand side of the discrete
problem in the following way:
We define the linear form Fh(·) through

Fh(w′h) =

∫
D
fw′h dx+

∑
F∈F∂Dh

∫
F
uν∂uw

′
hw ds+

∫
F
ρ
λ

ρ
|uν |2w′hw ds, (3.2)

where F∂Dh is the set of all boundary facets.
Then, the discrete problem reads as: Find wh ∈Wh such that

Bh(wh, w
′
h) = Fh(w′h) ∀w′h ∈Wh. (3.3)

Given an exact solution, the source term f is calculated automatically with NGSolve as
presented in section B.1.
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3.1. Description of the example problem

Figure 3.1: Exact solution w on the square geometry

Further, we will consider three different velocity fields:

u1 = (1, 1),

u2 = (−0.75y, 0.75x)

u3 = (2y(1− x2),−2x(1− y2))

(3.4)

The first velocity field u1 is simply the constant case. However, as we want to test how the
complexity of the velocity field might influence the performance of the discretization, we
also consider u2 and u3. The former is a rigid body rotation, whereas the latter describes a
vortex contained in D. Figures 3.2,3.3 and 3.4 display the velocity fields on a structured
mesh.

To evaluate the performance of the method, we considered the error in the L2- and the
W -norm:

eL2 := ‖w − wh‖D;

eW := |||w − wh|||W .
Further, we will also compute the error of the best L2-approximation. This means that we
solve for wBL2 such that

〈wBL2 , w′h〉D = 〈w,w′h〉D ∀w′h ∈Wh. (3.5)

Then, we denote
eBL2 := ‖w − wBL2‖D. (3.6)

We note that eBL2 is naturally a lower bound for eL2 .

In the convergence tables in this section, the estimated order of convergence (eoc) is given.
For errors ei, 2 ≤ i ≤ N where N is the number of mesh refinements, we calculate the eoc
with the following formula

eoc =
log(ei−1/ei)

log(2)
. (3.7)
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Figure 3.2: Velocity field u1 on a structured mesh

Figure 3.3: Velocity field u2 on a structured mesh
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3.2. Structured vs. unstructured Meshes

Figure 3.4: Velocity field u3 on a structured mesh

Furthermore, in the plots displaying the numerical errors we use the abbreviation

O(k) := O(hk). (3.8)

3.2 Structured vs. unstructured Meshes

Before doing convergence studies, we have to choose a triangulation of the domain D.
It turns out, that the type of mesh does influence the convergence in the L2-norm. This
section investigates what differences occur between a structured and an unstructured mesh.

The code for generating both, a structured and an unstructured mesh, with NGSolve is
shown in section B.2. Further, figure 3.5 shows examples for both types of mesh. We note
that in the case of an unstructured mesh1, varying the initial mesh size does change the
appearance of the mesh, cf. figure 3.6.

To compare how the choice of a structured or an unstructured mesh influences the rate of
convergence, we test the method with the velocity field u1, a polynomial degree k = 1, a
constant density ρ = 1, and a penalization parameter λ = 40. Tables 3.1 display the errors
eL2 , eBL2 and eW for a structured mesh and table 3.2 the same errors for an unstructured
mesh with initial mesh size 0.7. We observe that we achieve optimal rates of convergence
for all three errors on the structured mesh. In contrast, the rate of convergence in the
L2-norm in not optimal on the unstructured mesh, where the rate tends to be around
half an order lower than k + 1 and decreases even more with an increasing number of
refinements.

1note, that we use an unstructured mesh that is regularly refined, which means especially that the angles
between u and ν do not change.
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(a) Structured Mesh (b) Unstructured Mesh

Figure 3.5: A structured mesh (left) generated with n = 3 in the code from section B.2 and
an unstructured mesh (right) uniformly refined 2 times with an initial mesh size of 1.

Figure 3.6: An unstructured mesh uniformly refined 2 times with an initial mesh size of 0.7.

refs eL2 (eoc) eBL2 (eoc) eW (eoc)
k = 1

1 5.43 · 10−1 2.43 · 10−1 2.99 · 100

2 2.63 · 10−1 (1.05) 7.11 · 10−2 (1.77) 1.43 · 100 (1.07)
3 1.64 · 10−1 (0.68) 2.29 · 10−2 (1.64) 9.72 · 10−1 (0.55)
4 7.22 · 10−2 (1.18) 5.85 · 10−3 (1.97) 5.30 · 10−1 (0.88)
5 2.50 · 10−2 (1.53) 1.47 · 10−3 (1.99) 2.69 · 10−1 (0.98)
6 7.16 · 10−3 (1.8) 3.68 · 10−4 (2.0) 1.32 · 10−1 (1.03)
7 1.87 · 10−3 (1.94) 9.21 · 10−5 (2.0) 6.47 · 10−2 (1.03)
8 4.74 · 10−4 (1.98) 2.30 · 10−5 (2.0) 3.19 · 10−2 (1.02)

Table 3.1: Convergence table for u1 on a structured mesh
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refs eL2 (eoc) eBL2 (eoc) eW (eoc)
k = 1

1 1.21 · 10−1 4.08 · 10−2 1.18 · 100

2 4.11 · 10−2 (1.56) 1.11 · 10−2 (1.88) 6.06 · 10−1 (0.96)
3 1.24 · 10−2 (1.73) 2.81 · 10−3 (1.98) 3.03 · 10−1 (1.0)
4 3.59 · 10−3 (1.78) 7.05 · 10−4 (1.99) 1.50 · 10−1 (1.01)
5 1.11 · 10−3 (1.7) 1.76 · 10−4 (2.0) 7.47 · 10−2 (1.01)
6 4.03 · 10−4 (1.46) 4.41 · 10−5 (2.0) 3.73 · 10−2 (1.0)
7 1.75 · 10−4 (1.2) 1.10 · 10−5 (2.0) 1.86 · 10−2 (1.0)
8 8.35 · 10−5 (1.07) 2.76 · 10−6 (2.0) 9.31 · 10−3 (1.0)

Table 3.2: Convergence table for u1 on an unstructured mesh

To investigate this further, we repeat the test with a structured mesh that has flipped
triangles. This means that the hypotenuse of the mesh elements is oriented to the upper
right instead of the standard case, where the hypotenuse is oriented to the upper left.
Figure 3.7 shows an example of such a mesh and table 3.3 displays the observed rates of
convergence.

Figure 3.7: A structured mesh as in figure 3.5a with flipped triangles.

While the estimated order of convergence for eW is still optimal, eL2 does not converge
with optimal order. In fact, the rate of convergence is close to k = 1 after 5 refine-
ments and thus lower than in the unstructured case. To investigate these results, we plot
the velocity field u1 on the mesh with flipped triangles in figure 3.8. We observed that
the edges of the triangles are aligned with velocity field. In particular, this means that
u · νF = 0 for many facets, where νF is the facet normal. In the following, we will explain
why the alignment of the facets does, in fact, have an influence on the L2-convergence rates.

Considering the alignment of the facets, we can give an idea why the rate of convergence is
optimal for the first structured mesh, around half an order worse with a downward drift as
the mesh gets smaller for the unstructured case, and suboptimal for the second structured
mesh with flipped triangles. In remark 2.3 we mentioned that usually second order deriva-
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refs eL2 (eoc) eBL2 (eoc) eW (eoc)
k = 1

1 4.83 · 10−1 2.43 · 10−1 2.67 · 100

2 1.52 · 10−1 (1.66) 7.11 · 10−2 (1.77) 1.47 · 100 (0.86)
3 6.44 · 10−2 (1.24) 2.29 · 10−2 (1.64) 8.60 · 10−1 (0.77)
4 2.55 · 10−2 (1.34) 5.85 · 10−3 (1.97) 4.33 · 10−1 (0.99)
5 1.17 · 10−2 (1.12) 1.47 · 10−3 (1.99) 2.17 · 10−1 (1.0)
6 5.72 · 10−3 (1.03) 3.68 · 10−4 (2.0) 1.08 · 10−1 (1.0)
7 2.84 · 10−3 (1.01) 9.21 · 10−5 (2.0) 5.42 · 10−2 (1.0)
8 1.42 · 10−3 (1.0) 2.30 · 10−5 (2.0) 2.71 · 10−2 (1.0)

Table 3.3: Convergence table for u1 on a structured mesh with flipped triangles

Figure 3.8: Velocity field u1 on a structured mesh with flipped triangles.
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3.3. Convergence studies for different velocity fields

tives have a smoothing effect that is useful for proving optimal convergence rates in the
L2-norm and that we cannot apply such an argument, because the differential operator
does not have this effect orthogonal to the velocity field. In the discrete case however, we
seem to have a discrete smoothing effect that is captured when the facets are orthogonal
to the velocity field, which is the case for the first structured mesh. Consequently, we
observe convergence of optimal order in the L2-norm. In contrast, the structured mesh
with flipped triangles does not capture this effect, because the facets are aligned with the
velocity field and hence, we only get suboptimal convergence rates. The unstructured mesh
lies in between. Some facets might be orthogonal to the velocity field, while others might
be aligned, which is displayed in figure 3.9. As the mesh gets smaller there might be a
lot of facets that are aligned with the velocity, which explains why the rates in table 3.3
deteriorate with an increasing number of refinements.

Figure 3.9: Velocity field u1 on an unstructured mesh with initial mesh size 0.7 and 2
refinements. In the marked areas, the facets are (mostly) aligned with the velocity field.

On the basis of the interpretation, we choose to conduct the following experiments on a
structured mesh, as the convergence rates on an unstructured mesh can vary. In particular,
we choose the first type of structured mesh because it might yield optimal convergence
rates in the L2-norm.

3.3 Convergence studies for different velocity fields

Due to the tests in the previous section, we decided to perform the convergence studies
with a structured mesh. We choose a constant density ρ = 1 and set the penalization
parameter to λ = 10(k+ 1)2. Now we solve the problem for each velocity field ui, 1 ≤ i ≤ 3
and polynomial degrees 1 ≤ k ≤ 4. In each case, we refine the mesh eight times.

Our goal is to validate the result (2.33), which indicates convergence in an optimal order
of convergence of k for eW . Further, recall from remark 2.3 that while we are not able to
prove an optimal convergence rate of k + 1 in the L2, there at least holds eL2 . eW . We
will investigate, if we observe a better rate of convergence for our model problem.
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Chapter 3. Numerical experiments

Figures 3.10, 3.11 and 3.12 display the errors eW and eL2 for the three velocity fields u1,
u2 and u3 in a semi-log scale. Additionally, the tables 3.4, 3.5 and 3.6 show the eW , eL2

and eBL2 together with the respective eoc.
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Figure 3.10: Numerical errors for u1.
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Figure 3.11: Numerical errors for u2.

In accordance with the theoretical result, the errors in the W -norm converge with an
optimal order of k for all three velocity fields. Furthermore, the L2-rate for u1 and u2 is
approximately k + 1. For u3, the rates tends to be half and order below k + 1. However,
similarly as discussed in section 3.2, this might be caused by the combination of the
mesh and the non-constant velocity field. In comparison with eL2 , the error of the best
L2-approximation is approximately one order better. Additionally, the rate of convergences
drops in the last refinement step, with severity depending on the velocity field. This decline
might be an issue of computational machine accuracy, as both the error and the mesh size
are small.

In summary, the method seems to perform well.The observed convergence rates in the
W -norm are optimal for all three velocity fields. Even though the L2-rates depend on the
velocity field and the mesh, the rates are optimal for u1 and u2.
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3.3. Convergence studies for different velocity fields

refs eL2 (eoc) eBL2 (eoc) eW (eoc)
k = 1

1 5.43 · 10−1 2.43 · 10−1 2.99 · 100

2 2.63 · 10−1 (1.05) 7.11 · 10−2 (1.77) 1.43 · 100 (1.07)
3 1.64 · 10−1 (0.68) 2.29 · 10−2 (1.64) 9.72 · 10−1 (0.55)
4 7.22 · 10−2 (1.18) 5.85 · 10−3 (1.97) 5.30 · 10−1 (0.88)
5 2.50 · 10−2 (1.53) 1.47 · 10−3 (1.99) 2.69 · 10−1 (0.98)
6 7.16 · 10−3 (1.8) 3.68 · 10−4 (2.0) 1.32 · 10−1 (1.03)
7 1.87 · 10−3 (1.94) 9.21 · 10−5 (2.0) 6.47 · 10−2 (1.03)
8 4.74 · 10−4 (1.98) 2.30 · 10−5 (2.0) 3.19 · 10−2 (1.02)
k = 2

1 2.75 · 10−1 1.23 · 10−1 1.38 · 100

2 8.97 · 10−2 (1.62) 2.41 · 10−2 (2.35) 6.52 · 10−1 (1.08)
3 1.56 · 10−2 (2.53) 3.09 · 10−3 (2.96) 1.82 · 10−1 (1.84)
4 1.55 · 10−3 (3.33) 3.97 · 10−4 (2.96) 4.71 · 10−2 (1.95)
5 1.38 · 10−4 (3.49) 4.99 · 10−5 (2.99) 1.18 · 10−2 (2.0)
6 1.36 · 10−5 (3.34) 6.25 · 10−6 (3.0) 2.94 · 10−3 (2.0)
7 1.55 · 10−6 (3.14) 7.82 · 10−7 (3.0) 7.35 · 10−4 (2.0)
8 1.89 · 10−7 (3.04) 9.78 · 10−8 (3.0) 1.84 · 10−4 (2.0)
k = 3

1 1.17 · 10−1 3.07 · 10−2 9.17 · 10−1

2 1.80 · 10−2 (2.7) 1.37 · 10−3 (4.48) 1.59 · 10−1 (2.53)
3 8.53 · 10−4 (4.4) 1.11 · 10−4 (3.63) 2.46 · 10−2 (2.69)
4 3.95 · 10−5 (4.43) 6.68 · 10−6 (4.05) 3.15 · 10−3 (2.97)
5 2.21 · 10−6 (4.16) 4.13 · 10−7 (4.02) 3.95 · 10−4 (3.0)
6 1.35 · 10−7 (4.03) 2.57 · 10−8 (4.0) 4.94 · 10−5 (3.0)
7 8.40 · 10−9 (4.01) 1.61 · 10−9 (4.0) 6.16 · 10−6 (3.0)
8 5.65 · 10−10 (3.9) 1.00 · 10−10 (4.0) 7.70 · 10−7 (3.0)
k = 4

1 5.37 · 10−2 1.63 · 10−2 3.47 · 10−1

2 2.72 · 10−3 (4.3) 7.81 · 10−4 (4.39) 2.89 · 10−2 (3.59)
3 1.72 · 10−4 (3.99) 4.08 · 10−5 (4.26) 2.53 · 10−3 (3.52)
4 4.40 · 10−6 (5.28) 1.33 · 10−6 (4.94) 1.50 · 10−4 (4.07)
5 1.29 · 10−7 (5.1) 4.19 · 10−8 (4.98) 9.24 · 10−6 (4.02)
6 3.95 · 10−9 (5.03) 1.31 · 10−9 (5.0) 5.73 · 10−7 (4.01)
7 1.26 · 10−10 (4.97) 4.11 · 10−11 (5.0) 3.57 · 10−8 (4.01)
8 1.83 · 10−10 (-0.54) 1.28 · 10−12 (5.0) 2.44 · 10−9 (3.87)

Table 3.4: Convergence table for u1.
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refs eL2 (eoc) eBL2 (eoc) eW (eoc)
k = 1

1 4.39 · 10−1 2.43 · 10−1 9.80 · 10−1

2 1.73 · 10−1 (1.34) 7.11 · 10−2 (1.77) 5.47 · 10−1 (0.84)
3 7.18 · 10−2 (1.27) 2.29 · 10−2 (1.64) 3.25 · 10−1 (0.75)
4 2.32 · 10−2 (1.63) 5.85 · 10−3 (1.97) 1.62 · 10−1 (1.01)
5 6.82 · 10−3 (1.76) 1.47 · 10−3 (1.99) 7.88 · 10−2 (1.04)
6 1.85 · 10−3 (1.88) 3.68 · 10−4 (2.0) 3.84 · 10−2 (1.04)
7 4.80 · 10−4 (1.95) 9.21 · 10−5 (2.0) 1.88 · 10−2 (1.03)
8 1.21 · 10−4 (1.98) 2.30 · 10−5 (2.0) 9.30 · 10−3 (1.02)
k = 2

1 2.43 · 10−1 1.23 · 10−1 6.80 · 10−1

2 4.84 · 10−2 (2.33) 2.41 · 10−2 (2.35) 2.26 · 10−1 (1.59)
3 7.95 · 10−3 (2.61) 3.09 · 10−3 (2.96) 5.64 · 10−2 (2.0)
4 1.06 · 10−3 (2.91) 3.97 · 10−4 (2.96) 1.41 · 10−2 (2.0)
5 1.24 · 10−4 (3.1) 4.99 · 10−5 (2.99) 3.48 · 10−3 (2.01)
6 1.46 · 10−5 (3.08) 6.25 · 10−6 (3.0) 8.65 · 10−4 (2.01)
7 1.74 · 10−6 (3.07) 7.82 · 10−7 (3.0) 2.15 · 10−4 (2.01)
8 2.09 · 10−7 (3.06) 9.78 · 10−8 (3.0) 5.37 · 10−5 (2.0)
k = 3

1 1.03 · 10−1 3.07 · 10−2 3.54 · 10−1

2 1.27 · 10−2 (3.02) 1.37 · 10−3 (4.48) 6.49 · 10−2 (2.45)
3 9.49 · 10−4 (3.74) 1.11 · 10−4 (3.63) 8.46 · 10−3 (2.94)
4 7.46 · 10−5 (3.67) 6.68 · 10−6 (4.05) 1.07 · 10−3 (2.98)
5 4.80 · 10−6 (3.96) 4.13 · 10−7 (4.02) 1.33 · 10−4 (3.01)
6 2.73 · 10−7 (4.14) 2.57 · 10−8 (4.0) 1.65 · 10−5 (3.01)
7 1.54 · 10−8 (4.15) 1.61 · 10−9 (4.0) 2.05 · 10−6 (3.01)
8 8.69 · 10−10 (4.15) 1.00 · 10−10 (4.0) 2.56 · 10−7 (3.0)
k = 4

1 4.38 · 10−2 1.63 · 10−2 1.37 · 10−1

2 2.67 · 10−3 (4.03) 7.81 · 10−4 (4.39) 1.05 · 10−2 (3.71)
3 1.42 · 10−4 (4.23) 4.08 · 10−5 (4.26) 7.34 · 10−4 (3.84)
4 4.78 · 10−6 (4.9) 1.33 · 10−6 (4.94) 4.51 · 10−5 (4.02)
5 1.63 · 10−7 (4.87) 4.19 · 10−8 (4.98) 2.77 · 10−6 (4.03)
6 4.97 · 10−9 (5.03) 1.31 · 10−9 (5.0) 1.70 · 10−7 (4.02)
7 1.39 · 10−10 (5.16) 4.11 · 10−11 (5.0) 1.05 · 10−8 (4.01)
8 1.88 · 10−11 (2.89) 1.28 · 10−12 (5.0) 6.70 · 10−10 (3.97)

Table 3.5: Convergence table for u2.
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refs eL2 (eoc) eBL2 (eoc) eW (eoc)
k = 1

1 4.56 · 10−1 2.43 · 10−1 1.69 · 100

2 2.35 · 10−1 (0.96) 7.11 · 10−2 (1.77) 1.03 · 100 (0.71)
3 1.01 · 10−1 (1.22) 2.29 · 10−2 (1.64) 6.71 · 10−1 (0.62)
4 3.55 · 10−2 (1.51) 5.85 · 10−3 (1.97) 3.47 · 10−1 (0.95)
5 1.13 · 10−2 (1.65) 1.47 · 10−3 (1.99) 1.75 · 10−1 (0.99)
6 3.19 · 10−3 (1.83) 3.68 · 10−4 (2.0) 8.71 · 10−2 (1.01)
7 8.56 · 10−4 (1.9) 9.21 · 10−5 (2.0) 4.33 · 10−2 (1.01)
8 2.32 · 10−4 (1.89) 2.30 · 10−5 (2.0) 2.16 · 10−2 (1.0)
k = 2

1 1.16 · 100 1.23 · 10−1 2.47 · 100

2 6.50 · 10−2 (4.16) 2.41 · 10−2 (2.35) 4.65 · 10−1 (2.41)
3 1.02 · 10−2 (2.67) 3.09 · 10−3 (2.96) 1.20 · 10−1 (1.96)
4 1.47 · 10−3 (2.8) 3.97 · 10−4 (2.96) 3.08 · 10−2 (1.96)
5 2.04 · 10−4 (2.84) 4.99 · 10−5 (2.99) 7.83 · 10−3 (1.97)
6 3.15 · 10−5 (2.7) 6.25 · 10−6 (3.0) 1.98 · 10−3 (1.98)
7 5.16 · 10−6 (2.61) 7.82 · 10−7 (3.0) 4.99 · 10−4 (1.99)
8 8.81 · 10−7 (2.55) 9.78 · 10−8 (3.0) 1.25 · 10−4 (2.0)
k = 3

1 1.11 · 10−1 3.07 · 10−2 5.46 · 10−1

2 1.65 · 10−2 (2.75) 1.37 · 10−3 (4.48) 1.30 · 10−1 (2.07)
3 1.41 · 10−3 (3.54) 1.11 · 10−4 (3.63) 1.84 · 10−2 (2.82)
4 1.36 · 10−4 (3.37) 6.68 · 10−6 (4.05) 2.42 · 10−3 (2.93)
5 1.22 · 10−5 (3.48) 4.13 · 10−7 (4.02) 3.08 · 10−4 (2.98)
6 9.20 · 10−7 (3.73) 2.57 · 10−8 (4.0) 3.87 · 10−5 (2.99)
7 7.09 · 10−8 (3.7) 1.61 · 10−9 (4.0) 4.85 · 10−6 (3.0)
8 5.64 · 10−9 (3.65) 1.00 · 10−10 (4.0) 6.07 · 10−7 (3.0)
k = 4

1 2.26 · 10−1 1.63 · 10−2 5.95 · 10−1

2 3.63 · 10−3 (5.96) 7.81 · 10−4 (4.39) 2.08 · 10−2 (4.84)
3 2.08 · 10−4 (4.12) 4.08 · 10−5 (4.26) 1.38 · 10−3 (3.91)
4 1.01 · 10−5 (4.37) 1.33 · 10−6 (4.94) 9.29 · 10−5 (3.89)
5 4.54 · 10−7 (4.47) 4.19 · 10−8 (4.98) 6.09 · 10−6 (3.93)
6 1.99 · 10−8 (4.52) 1.31 · 10−9 (5.0) 3.90 · 10−7 (3.96)
7 8.82 · 10−10 (4.49) 4.11 · 10−11 (5.0) 2.46 · 10−8 (3.98)
8 7.38 · 10−11 (3.58) 1.28 · 10−12 (5.0) 1.58 · 10−9 (3.96)

Table 3.6: Convergence table for u3.
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Figure 3.12: Numerical errors for u3.

3.4 Influence of the penalization parameter

The penalization parameter λ has to be chosen large enough so that the problem is
coercive, but the condition number of the system matrices grow with λ. We already
described this problem in section 2.6 along with some possible remedies like the Bassi-
Rebay stabilization. In this section, we want to investigate numerically how the penalization
parameter influences the condition number in our example problem.
To do this, we will calculate the condition number of the stiffness matrix for different λ. For
a basis Φ = {φi}1≤i≤dimWh

of the space Wh, the stiffness matrix B is defined as

Bij = Bh(φj , φi). (3.9)

We define

κ̄(B) :=
λmax

λmin
, (3.10)

where λmax is the maximal and λmin the minimal eigenvalue of the matrix B.

This is a common estimate for the condition number, which is exact for symmetric positive
definite matrices.
Furthermore, we consider the condition number when the matrix B is diagonal precondi-
tioned. This means that we calculate κ̄(JB), where

J := diag(BFF )−1. (3.11)

For this experiment we choose a structured mesh generated by the code B.2 with six
refinements. In tables 3.7 and 3.8 the condition numbers for polynomial degree k = 1 and
k = 4 are shown. The results for k = 2 and k = 3 are similar and can be found in the
appendix in section C.1.

We note that to approximate the condition numbers, we calculate the eigenvalues with a
computationally simple numerical eigenvalue solver in NGSolve, which might not be very
accurate. However, the results do illustrate how the penalization parameter influences the
results from the discretization. First of all, we observe that the condition number does
in fact grow with the penalization parameter λ. Secondly, we notice that some estimates
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3.4. Influence of the penalization parameter

velocity field u1 u2 u3

λ κ̄(B) κ̄(JB) κ̄(B) κ̄(JB) κ̄(B) κ̄(JB)

1 (−1.96) (−1.01) (−2.24) (−1.07) (−2.7) (−2.23)
2 (−5.91) (−4.43) (−8.27) (−7.1) (−20.55) (−8.93)
4 8218.48 8601.06 6573.03 2792.32 10349.29 4287.99
8 12291.3 12798.07 7770.09 3660.04 11393.5 5853.17
16 18322.75 17842.76 8388.49 4460.4 10879.98 6169.66
32 25880.81 22168.92 9061.45 5107.72 10716.85 7227.53
64 32346.54 24467.45 9343.06 5499.63 10415.5 8586.66
128 36733.82 31598.81 10199.64 6739.26 10764.01 8733.65
256 43054.67 34331.81 11187.31 5995.68 11008.81 8478.29
512 74125.53 41153.27 12617.2 9744.0 12161.53 8947.2
1024 117410.63 70580.26 13066.6 11694.13 13719.18 12125.62
2048 117454.63 133162.03 13856.81 16724.89 14467.64 21094.17
4096 156701.56 164851.99 13846.94 24457.18 14802.6 26448.93
8192 273717.37 172864.59 14204.49 30718.2 15321.66 29563.64

Table 3.7: Condition numbers with different λ for k = 1

velocity field u1 u2 u3

λ κ̄(B) κ̄(JB) κ̄(B) κ̄(JB) κ̄(B) κ̄(JB)

1 (−0.66) (−1.0) (−0.71) (−0.44) (−0.75) (−1.78)
2 (−0.74) (−0.99) (−0.85) (−0.55) (−0.94) (−0.55)
4 (−0.95) (−1.0) (−1.25) (−1.01) (−1.67) (−1.23)
8 (−1.66) (−1.0) (−2.94) (−1.01) (−8.22) (−5.25)
16 (−7.25) (−6.01) (−27.73) (−13.97) 3615.87 2510.83
32 6269.1 4263.93 3384.01 1975.33 3638.88 2465.41
64 4203.71 3337.48 3556.11 1910.33 3721.05 2472.56
128 3055.45 2068.3 3997.17 2162.34 3934.51 2609.07
256 3329.93 2085.27 4650.05 2491.29 4349.95 2718.85
512 2398.46 2519.34 5876.29 2776.75 5167.0 2997.91
1024 3449.83 2608.66 7870.54 3483.83 6125.91 3607.5
2048 5617.6 2819.21 11701.46 4158.63 8287.57 4225.68
4096 7383.71 5360.18 17969.45 5289.75 13070.98 5442.09
8192 10914.37 10289.04 26455.35 8452.72 20985.54 9032.28

Table 3.8: Condition numbers with different λ for k = 4
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for the condition numbers are negative. As symmetric positive matrices have only real
and positive eigenvalues, this can only happen when the stiffness matrix is not symmetric
positive definite, which means that the problem is not coercive. Recall that in 2.2, we
showed coercivity under the assumption that

λ ≥ 1 + 4c2
tr. (3.12)

Further, from section 2.5 we know that the constant ctr depends among other things on the
polynomial degree k. The results in tables 3.7 and 3.8 shows this dependence: For k = 1,
the condition number estimate is negative for λ ≤ 2 and hence λ needs to be chosen bigger
than two for the problem to be coercive. In contrast, for k = 4 we need to choose λ to be
at least 16 such that the problem is coercive.

In conclusion, this experiment illustrated how difficult choosing a suitable penalization
parameter might be. On the one hand, the condition numbers grow with λ, but on the
other hand, λ has to be large enough such that the problem is coercive. Introducing a
generalized eigenvalue problem or switching to a Bassi-Rebay type stabilization can solve
this problem. The results in section 3.3 show that the discretization performs well for our
example problem and the penalization parameter does not seem to cause problems. As
such, we see no need to implement one of the remedies here.

3.5 The problem without the volume term

At the beginning of this thesis, we argued that the volume term is added to the diffusion
operator to make the problem well-posed. In this section, we will demonstrate this by
considering the diffusion operator only. We repeat the convergence studies from section
3.3 for the problem:
Find wh ∈Wh such that

−∇ · (ρ(u⊗ u)∇wh) = f in D. (3.13)

The corresponding bilinear form derived in section 1.3 is

bh(wh, w
′
h) =

∑
T∈Th

〈ρ∂uwh, ∂uw′h〉T +
∑
F∈Fh

{
〈uν{{−ρ∂uwh · ν}}, Jw′hK〉F

+ 〈uν{{−ρ∂uw′h · ν}}, JwhK〉F

+ 〈ρλ
h
|uν |2JwhK, Jw′hK〉F

}
.

(3.14)

We note that we also have to adjust the code for calculation of the source term f (cf. section
B.1) accordingly. Furthermore, we still consider the exact solution w defined in (3.1).

The differential operator ∂u is linear, so any functions from its kernel that we add to a
solution wh vanishes. As such, the discrete solution is not unique, unless the velocity fields
interacts sufficiently with the boundary conditions. In our case, the solution of problem
without the volume term is only unique for the constant velocity field u1 and not for u2

and u3. The velocity field u1 is a straight line crossing the boundary. Hence, the discrete
solution will be unique due to the Dirichlet boundary conditions. In contrast, for the other
two velocity fields, a rotation, and a vortex, several trajectories do not cross the boundary.
Consequently, the exact solution is not unique. Hence, we cannot expect this to be true for
the discrete solution either.
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3.5. The problem without the volume term

The numerical results, displayed in figures 3.13, 3.14 and 3.15, confirm this assertion. For
u1, we observe that the method performs well and the L2- and the W -norm error converges
as expected from the previous experiments. For u2 and u3, the errors do not converge.
Altogether, this experiment shows that the volume term is indeed vital for the well-
posedness of the method.
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Figure 3.13: Numerical errors for u1 without the volume term.
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Figure 3.14: Numerical errors for u2 without the volume term.
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Figure 3.15: Numerical errors for u3 without the volume term.

3.6 Non-constant density

While the theoretical analysis in chapter 2 explicitly allows for ρ to be non-constant, we
have only considered a constant density so far. In this section, we want to explore the
performance of our method in the case of a non-constant density.
In order to measure the distance of a point to the boundary more conveniently, we switch
to a circle geometry:

D = {x ∈ R2 | x2 + y2 ≤ 1}, (3.15)

Figure 3.16 shows the domain D. The unstructured mesh was generated with the third
code block from section B.2. It is possible to generate a structured mesh for the circle, but
considering the results from section 3.2 it might not necessarily be beneficial for the velocity
fields u2 and u3. As such, we choose to conduct the experiments with an unstructured mesh.

Figure 3.16: Circle geometry triangulated with an unstructured mesh.

The definition of the circle geometry allows us to measure the difference of a point
(x, y) ∈ R2 to the boundary ∂D in the following way:

dist((x, y), ∂D) = 1−
√
x2 + y2.
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3.6. Non-constant density

Hence, we define a density that has a peak at the origin and gets small close to the
boundary:

ρn(x, y) = (1.75− (x2 + y2))n n ∈ N. (3.16)

Figure 3.17 shows ρ2. As displayed in table 3.9, the bigger the exponent, the more extreme
is the difference between the maximal and the minimal value.

Figure 3.17: Density ρ2 on the circle geometry.

n max ρn min ρn
2 3.0625 0.5625
4 9.3789 0.3164
8 87.9639 0.1001
12 825.005 0.0317
16 7737.6446 0.01

Table 3.9: Maximal and minimal value of ρn for n ∈ {2, 4, 8, 16}.

Furthermore, we still use the exact solution from the previous numerical experiments, that
is

w = exp(−6((x+ 0.5)2 + y2))− exp(−6((x− 0.5)2 + y2)). (3.17)

It is displayed on the circle geometry in figure 3.18. Note that the Dirichlet boundary
condition are not homogeneous on the circle geometry as well, so we again use the linear
form Fh(·) for the implementation.

Remark 3.1 (On the smoothness assumptions on ρ). Aside from being bounded from below
and above, the main assumption on the density ρ in section 1.1 was that it should be sufficiently
smooth. In our choice for ρn, we purposely used the square of the euclidean norm to fulfil this

44



Chapter 3. Numerical experiments

Figure 3.18: Exact solution w on the circle geometry.

assumption. The following example shows that the smoothness assumption on ρ cannot be left
out. We consider the density

ρ = (1.75−
√
x2 + y2)12. (3.18)

Due to the square root, this density violates the smoothness assumption at the point (0, 0). The
velocity field u1 travels through this singularity.
Figure 3.19 shows the discrete solution and the rates of convergence for this case. The rates
are far from optimal, and we can even see the singularity in the discrete solution, which shows
that the smoothness assumption on ρ is indeed necessary.

(a) Discrete Solution
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Figure 3.19: Discrete solution (left) with u1 and the non-smooth density (3.18) with the
corresponding L2-errors (right) in a semi-log scale.

3.6.1 Convergence Studies

Before we present the results of the convergence studies with a non-constant density,
we will demonstrate that the geometry switch does not change the observations from
section 3.3. To this end, we will first consider the problem with different constant densities
ρ ∈ {1, 100, 1000}. Figures 3.20 and 3.21 show the errors in the L2- and the W -norm for
velocity field the u3. In both cases, the errors in the W - and the L2-norm convergence with
an optimal order of k and k + 1 respectively. The results for the other two velocity fields
are similar and can be found in section C.3.
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Figure 3.20: Numerical errors for u2 with ρ ∈ {1, 100, 10000} in the L2-norm.
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Figure 3.21: Numerical errors for u2 with ρ ∈ {1, 100, 10000} in the W -norm.

Now, we consider the problem with the non-constant density ρn defined by (3.16) with
n ∈ {4, 8, 12, 16}. Figures 3.22, 3.23 and 3.24 display eL2 for the velocity fields u1,u2 and
u3 respectively. We observe that the rates of convergence in the L2-norm are close to
optimal with some variation depending on the velocity field. This makes sense, because as
we have seen in section 3.2, the alignment of the facets with respect to the velocity field
influences the eoc of eL2 . For u1 and u3, the rates in the last refinement step drop as it was
the case in section 3.3.
In contrast, the numerical error in the W -norm converges optimally for all three velocity
fields. Figure 3.25 displays the errors for u2; the remaining plots for u1 and u3 are similar
and can be found in the appendix in C.4.

However, we note that the absolute errors in the W -norm, as seen in table 3.11, increase
with increasing exponent n. In contrast, the errors in the L2-norm, displayed in table 3.10
do not change with respect to n. This makes sense as the W -norm scales with ρ, while the
L2-norm does not.

Overall, using a non-constant density ρ does not seem to have a negative impact on the
performance of the method, even if the deviation of ρ to a constant inside the domain is
large. There are some slight variations in the rate of convergence in the L2-norm, but this
might be caused by the unstructured mesh.
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Figure 3.22: Numerical errors for u1 with and ρn with n ∈ {4, 8, 12, 16} in the L2-norm.
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Figure 3.23: Numerical errors for u2 with and ρn with n ∈ {4, 8, 12, 16} in the L2-norm.
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Figure 3.24: Numerical errors for u3 with and ρn with n ∈ {4, 8, 12, 16} in the L2-norm.
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Figure 3.25: Numerical errors for u2 with and ρn with n ∈ {4, 8, 12, 16} in the W -norm.
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ρ8 ρ16

refs eL2 (eoc) eL2 (eoc)
k = 1

1 9.91 · 10−2 2.89 · 10−1

2 2.76 · 10−2 (1.84) 5.77 · 10−2 (2.32)
3 7.65 · 10−3 (1.85) 1.35 · 10−2 (2.1)
4 2.15 · 10−3 (1.83) 3.40 · 10−3 (1.99)
5 6.20 · 10−4 (1.79) 8.99 · 10−4 (1.92)
6 1.87 · 10−4 (1.73) 2.47 · 10−4 (1.86)
k = 2

1 7.28 · 10−3 4.20 · 10−2

2 1.24 · 10−3 (2.55) 1.84 · 10−3 (4.51)
3 2.24 · 10−4 (2.47) 1.68 · 10−4 (3.46)
4 4.10 · 10−5 (2.45) 3.71 · 10−5 (2.18)
5 7.45 · 10−6 (2.46) 7.24 · 10−6 (2.36)
6 1.34 · 10−6 (2.48) 1.33 · 10−6 (2.45)
k = 3

1 7.29 · 10−4 1.20 · 10−2

2 6.24 · 10−5 (3.55) 3.34 · 10−4 (5.16)
3 5.73 · 10−6 (3.45) 1.00 · 10−5 (5.06)
4 4.30 · 10−7 (3.73) 4.29 · 10−7 (4.54)
5 2.67 · 10−8 (4.01) 2.39 · 10−8 (4.16)
6 2.03 · 10−9 (3.72) 1.92 · 10−9 (3.64)
k = 4

1 1.18 · 10−4 1.92 · 10−3

2 4.97 · 10−6 (4.57) 2.53 · 10−5 (6.24)
3 1.98 · 10−7 (4.65) 4.12 · 10−7 (5.94)
4 9.34 · 10−9 (4.4) 1.11 · 10−8 (5.21)
5 4.39 · 10−10 (4.41) 4.54 · 10−10 (4.61)
6 2.56 · 10−11 (4.1) 2.50 · 10−11 (4.18)

Table 3.10: L2-convergence table for u2 with non-constant ρn, n ∈ {8, 16}.
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3.6. Non-constant density

ρ8 ρ16

refs eW (eoc) eW (eoc)
k = 1

1 9.54 · 10−1 5.08 · 100

2 4.55 · 10−1 (1.07) 2.38 · 100 (1.1)
3 2.19 · 10−1 (1.06) 1.13 · 100 (1.07)
4 1.06 · 10−1 (1.04) 5.48 · 10−1 (1.05)
5 5.23 · 10−2 (1.02) 2.69 · 10−1 (1.03)
6 2.59 · 10−2 (1.01) 1.33 · 10−1 (1.02)
k = 2

1 1.45 · 10−1 8.10 · 10−1

2 3.58 · 10−2 (2.02) 2.00 · 10−1 (2.02)
3 8.81 · 10−3 (2.02) 4.91 · 10−2 (2.03)
4 2.18 · 10−3 (2.02) 1.21 · 10−2 (2.02)
5 5.41 · 10−4 (2.01) 2.99 · 10−3 (2.01)
6 1.35 · 10−4 (2.01) 7.42 · 10−4 (2.01)
k = 3

1 1.95 · 10−2 1.04 · 10−1

2 2.51 · 10−3 (2.96) 1.31 · 10−2 (2.99)
3 3.10 · 10−4 (3.02) 1.61 · 10−3 (3.02)
4 3.82 · 10−5 (3.02) 1.98 · 10−4 (3.02)
5 4.73 · 10−6 (3.01) 2.45 · 10−5 (3.01)
6 5.89 · 10−7 (3.01) 3.05 · 10−6 (3.01)
k = 4

1 1.16 · 10−3 6.64 · 10−3

2 6.69 · 10−5 (4.11) 3.64 · 10−4 (4.19)
3 4.02 · 10−6 (4.06) 2.11 · 10−5 (4.11)
4 2.45 · 10−7 (4.04) 1.26 · 10−6 (4.06)
5 1.50 · 10−8 (4.02) 7.73 · 10−8 (4.03)
6 9.74 · 10−10 (3.95) 4.98 · 10−9 (3.96)

Table 3.11: W -convergence table for u2 with non-constant ρn, n ∈ {8, 16}.
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Chapter 3. Numerical experiments

3.6.2 Condition numbers for non-constant ρ

To conclude our investigation of the influence of a non-constant density ρ, we will consider
the condition numbers of the stiffness matrix as in section 3.4. First, we calculate the
conditions numbers for velocity field u3 with the numerical eigenvalue solver of NGSolve
as before. The results are displayed in table 3.12.
Notice that the condition number increases whenever we increase the exponent n in ρn.
However, the condition number does not grow significantly when refining the mesh. This
seems unrealistic and indicates that the condition numbers calculated with NGSolve might
not be very exact in this case.

κ̄(B) κ̄(JB)

refs n = 8 n = 16 n = 8 n = 16

u1

1 8651.06 25290.62 2229.93 3387.13
2 8016.68 21899.12 1861.19 2278.51
3 8679.43 20192.35 1752.74 1854.56
4 8479.85 19137.28 1775.23 1841.85
5 8683.63 18487.89 1883.34 1821.01
6 8734.66 19093.46 1949.56 1903.99

u2

1 6074.63 10109.08 9594.95 10391.57
2 5712.54 10691.52 9679.67 11517.85
3 5327.91 11576.77 8468.4 11316.8
4 5383.58 11261.1 7219.96 12090.28
5 5386.07 11213.81 6511.72 11405.2
6 5393.4 11152.83 6252.85 10038.37

u3

1 5243.02 12600.57 2524.59 6878.67
2 5177.56 12079.49 2424.23 3039.73
3 5299.59 12060.91 2320.72 2451.4
4 5774.93 11743.95 2397.4 2455.26
5 5829.75 11723.35 2509.51 2348.84
6 5892.57 11754.33 2633.9 2492.17

Table 3.12: Condition numbers for k = 4 with non-constant density ρn, n ∈ {8, 16}.

Consequently, in table 3.13 we consider the condition numbers calculated exactly with
SciPy. The code can be found in section B.4. Note that this calculation is very expensive,
especially for smaller mesh sizes. As such, we only consider the first two refinements levels.

These numbers are significantly greater than the numbers in the previous table. Further-
more, we notice that the condition numbers increase with higher n as well. In particular,
when increasing n from 8 to 16, the condition numbers of the matrix B increase by ap-
proximately two orders of magnitude. Using a diagonal preconditioner, this increase gets
reduced by approximately an order of magnitude. Nevertheless, using a density that has a
large deviation in the domain D might have a negative impact on the condition number.
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3.6. Non-constant density

κ̄(B) κ̄(JB)

refs n = 8 n = 16 n = 8 n = 16

1 2.86 · 106 1.63 · 108 6.37 · 105 3.95 · 106

2 1.46 · 107 1.17 · 109 2.47 · 106 1.06 · 107

Table 3.13: Condition numbers calculated with SciPy for u3 and k = 4 with a non-constant
density ρn, n ∈ {8, 16}.

Remark 3.2 (Conditioning issues without the ρ-scaling). Especially when considering either
high constant densities or densities that vary highly inside the domain, the ρ-scaling for the
volume term becomes vital. For instance, figure 3.26 displays the errors for velocity field u3

with ρ = 10000. Notice that the errors do not convergence optimally, especially for higher
polynomial degree.
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Figure 3.26: Numerical errors for u3 without the ρ-scaling in front of the volume term.

To investigate this result further, we consider the condition numbers of the system matrices
with and without the ρ-scaling in front of the volume term. Table 3.14 shows the condition
numbers calculated exactly with SciPy. We observe a significant decrease in the condition when
the volume term is scaled with ρ. Intuitively, this makes sense. An estimate for the condition
numbers is λmax

λmin
. When only one term of our problem is scaled with ρ, the corresponding

eigenvalue also scales with ρ, while the other does not. Hence, the condition numbers are
influenced by the density, when the volume term does not scale with ρ.

κ̄(B) κ̄(JB)

refs ρw w ρw w

1 1.25 · 106 3.34 · 109 4.13 · 105 9.74 · 108

2 6.08 · 106 1.53 · 1010 1.53 · 106 6.15 · 109

Table 3.14: Condition numbers calculated with SciPy for u3 and k = 4 with and without
the ρ-scaling in front of the volume term.
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Chapter 4

Conclusion

To conclude this thesis, this chapter will summarize the achievements and discuss open
problems, in terms of the model problem and the broader context.

4.1 Summary

In this thesis we developed and analysed a DG discretization for a degenerate diffusion
problem arising in the context of a numerical model for the equations of solar and stellar
oscillation.
The developed discretization is consistent, coercive, and continuous, which means that
the discrete problem is well-posed. Furthermore, we proved an a priori error estimate
that implies an optimal convergence rate of k in an energy-like norm. This rate was also
confirmed by the numerical experiments. Because the continuous problem is not necessarily
L2-H2-regular, we were not able to prove an optimal L2-error estimate, and we saw in
the numerical experiments that it can not be expected in general. However, in the narrow
setting of the example consider in this work and with the choice of a suitable triangula-
tion, the numerical experiments yielded an optimal convergence rate in the L2-norm as well.

Further, we explored, theoretically and numerically, how the penalization parameter might
influence the condition number of the system matrices. We presented two possible remedies,
a generalized eigenvalue problem and a Bassi-Rebay-stabilization. However, the numerical
results indicated that an implementation was not necessary for the considered example
problem.
Finally, we investigated if and how the choice of a non-constant density influences the
performance of the method. We found that the method performs well with a non-constant
density, even if the variation of the density in the domain is large.

4.2 Outlook and open problems

Though we studied the problem intensively, especially in terms of numerical experiments,
there are still some issues and improvements left that might be considered in the future.
This final section gives an overview over some of those.

First of all, let us start with some straightforward extensions of our problem. For this thesis,
we only considered scalar functions w ∈W . In context of the equations of solar and stellar
oscillations however, a vectorial model is required. Note, further, that we only considered
Dirichlet boundary conditions.
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Secondly, we observed that the condition numbers of the system matrices grow depending
on the penalization parameter λ and the density ρ. For the former, we already described
alternative stabilization mechanisms in theory, but did not implement them. However, for
different applications this might be beneficial. For the latter, one might consider precondi-
tioning. We did not use a diagonal preconditioner for solving the problem, but have already
seen in the numerical experiments that it could improve the condition number. Depending
on the model problem, other suitable preconditioners might be helpful for solving the
problem efficiently.

Furthermore, optimality of convergence rates in the L2-norm may depend on the mesh
and the velocity field. If one considers a different domain D or more complex velocity
fields and still wants to achieve optimal convergence in the L2-norm, one has to be careful
when choosing a triangulation of D and even then it is not clear if near best approximation
results can be expected.

Finally, there are modifications of DG discretizations that could be considered. One could,
for example, formulate the problem as an Hybrid Discontinuous Galerkin (HDG) method.
In short, HDG methods introduce additional facet unknowns wF ∈ L2(Fh). This improves
computational efficiency as neighbouring elements do not couple directly any more, which
means that they can be eliminated by static condensation. For a more extensive overview,
we refer to [Leh10].

After giving a short overview over these possible extensions, let us describe what steps
are necessary to remove some simplifications that we introduced in the introduction. As
described there, the main goal is to develop a numerical model for the equations of solar
and stellar oscillations.

Recall that we defined the bilinear form ãh(·, ·) through

ãh(vh, vh) := 〈ρc2∇ · vh,∇ · vh〉+ a2
h(vh, vh) ∀vh ∈ Vh, (4.1)

where Vh := {ξh ∈ Xh | ∇ · ξh = 0}⊥.
The next step is to show inf-sup stability of this bilinear form. Afterwards, one can continue
by reintroducing the omitted zero-order terms and considering the case, where the pressure
is not constant any more and thus q 6= 0.
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Chapter A

On triangulations and elementary inequalities

This chapter contains some elementary results on triangulations and inequalities to which
we refer throughout the thesis. All statements are well-known and, thus, given without
proofs.

A.1 Triangulations

Triangulations are essential for finite element methods. However, notation is not always
consistent. As such, we will give a brief introduction before stating the required results.
Note that this chapter largely follows the lecture notes by Lehrenfeld [Leh21, Section 4.1].

Let D ⊂ Rd be a bounded Lipschitz domain that can be decomposed into a finite number
of subsets T . We denote the collection of these sets as Th = {T}. We call Th an admissible
triangulation if

• D =
⋃
T∈Th T ,

• int(T1) ∩ int(T2) = ∅ ∀T1, T2 ∈ Th,

• for any facet F ∈ ∂T1 of any T1 ∈ Th there holds either F ∈ ∂D or F ∈ ∂T2 for a
T2 ∈ Th.

In the following, we will denote the length of an element as hT and the radius of the largest
ball contained in an element as ρT . Precisely, this means that we define

hT := diam(T ) = sup
x,y∈T

‖x− y‖,

ρT := sup{diam(B) | B is a Ball contained in T}.

The triangulation Th is shape-regular, if there exits a σ > 0 such that

σT :=
hT
ρT
≤ σ ∀T ∈ Th, (A.1)

and quasi-uniform, if there holds

hT ' h := max
T∈Th

hT . (A.2)

In this thesis, we only consider simplex triangulations, but in general other types of elements
are possible. For every dimension we can define a reference simplex T̂ ⊂ Rd.For instance,
in two dimensions the reference simplex is given by

T̂ = conv{(0, 0)T , (1, 0)T , (0, 1)T }.

The following results will be useful when proving the inverse inequality in section 2.5:
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A.2. Inequalities

Lemma A.1. Every non-degenerate simplex T in Rd is affine equivalent to the reference
simplex T̂ in Rd, i.e. there exits an affine mapping Φ : T̂ → T , Φ(x) = Ax+ b with b ∈ Rd
and A ∈ Rd×d, det(A) 6= 0. Further, Φ is invertible and there holds

‖DΦ‖ = ‖A‖ ≤ hT /ρT̂ ;

‖DΦ−1‖ = ‖A−1‖ ≤ h
T̂
/ρT ;

cρdT ≤ |det(DΦ)| = |det(A)| ≤ ChdT .
(A.3)

for some constants 0 < c ≤ C.

Lemma A.2. Let T, T̂ ⊂ D be open, bounded and affine equivalent. There holds for u ∈
Hm(T ) and û := u ◦ Φ ∈ Hm(T̂ ) that

|û|
Hm(T̂ )

. ‖A‖m| det(A)|− 1
2 |u|Hm(T ),

|u|Hm(T ) . ‖A−1‖m|det(A)| 12 |û|
Hm(T̂ )

.
(A.4)

From the previous lemma we can infer that

|û|
Hm(T̂ )

.
(hT
ρ
T̂

)m
ρ
− d

2
T |u|Hm(T ), (A.5)

and similarly

|u|Hm(T ) .
(h

T̂

ρT

)m
h
d
2
T |û|Hm(T̂ )

. (A.6)

Note that the implied constants only depend on the shape regularity and on m.

A.2 Inequalities

Especially in the error analysis in chapter 2, we use the following two elementary inequality
repeatedly.

Lemma A.3 (Cauchy-Schwarz inequality). For the L2-scalar product and u, v ∈ L2(D) there
holds that

〈u, v〉D ≤ ‖u‖D‖v‖D. (A.7)

A special case for the l2-scalar product (a, b)2 :=
∑n

i=1 aibi where a, b ∈ Rn is

n∑
i=1

aibi ≤
( n∑
i=1

ai

) 1
2
( n∑
i=1

bi

) 1
2
. (A.8)

Lemma A.4 (Young’s inequality). For a, b, γ ∈ R there holds that

ab ≤ a2

2γ
+
γb2

2
(A.9)
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Chapter B

Code

This chapter contains the code used for evaluating the method numerically, cf. chapter 3.
We focus on the parts that are tailored to the problem and omit the general parts, such as
looping over different levels of refinements or penalization parameters. The implementation
relies on the NGSolve library. Note that in the code, the bilinear form is denoted as a and
the test- and trial functions as w and v.
Two explanatory Jupyter notebooks containing the code from this section can be found on
my GitHub account.

B.1 Calculation of a source term f

This python code calculates the source term f for a given velocity field u, a given exact
solution w and a given density ρ for D ⊂ R2. Then, f is given by

f = ρw −∇ · (ρ(u⊗ u)∇w)

from ngsolve import *

def calculate_rhs(u,exact,rho):
umat = CoefficientFunction(u,dims=(2,1))

uTen = umat*umat.trans
exactGrad = (exact.Diff(x),exact.Diff(y))

exactDiffusion = rho*uTen*exactGrad
exactDiv = exactDiffusion[0].Diff(x)+exactDiffusion[1].Diff(y)

rhs = rho*exact−exactDiv
return rhs, exactGrad
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B.2. Mesh generation

B.2 Mesh generation

The following code block generates a structured mesh as seen in figure 3.5a. The number
of triangles that the square is decomposed into is controlled by the parameter n. Thus,
increasing n allows refining the mesh.

from netgen.geom2d import SplineGeometry
from ngsolve import *
from ngsolve.meshes import *

n = 1

mesh = MakeStructured2DMesh(quads=False, nx=2**n, ny=2**n,mapping =
↪→ lambda x,y: (2*x−1,2*y−1))

To generate an unstructured mesh as seen in figure 3.5b, this code can be used. The
parameter maxh sets the initial mesh size and the parameter refs controls the number of
mesh refinements.

from netgen.geom2d import SplineGeometry
from ngsolve import *

refs = 1

ngmesh = square.GenerateMesh(maxh=0.7)

mesh = Mesh(ngmesh)

for i in range(refs):
ngmesh.Refine()

mesh = Mesh(ngmesh)

Finally, with this code we can generate the circle geometry used in section 3.6. As before,
maxh and refs can be used to set the initial mesh size and the number of refinements
respectively.

from netgen.geom2d import SplineGeometry
from ngsolve import *

refs = 1

maxh = 1

geo = SplineGeometry()

geo.AddCircle(c=(0,0),r=1,bc="circle")

ngmesh = geo.GenerateMesh(maxh=maxh)

for i in range(refs):
ngmesh.Refine()

mesh = Mesh(ngmesh)

mesh.Curve(7)

B.3 Solving the problem

The previous code blocks build the preliminary structures which are necessary to solve the
problem with the following code. The main function Solve() needs the polynomial degree,
the exact solution, the density ρ, a velocity field u, a penalization parameter λ and a mesh
as input. It offers further the option to calculate the best L2-approximation on the exact

58



Appendix B. Code

solution and to estimate the condition numbers of both, the assembled matrix A and the
diagonal preconditioned matrix.
Though we will not describe the specifics of the NGSolve library further, we would like to
highlight two peculiarities:

• To reduce the quadrature error, we increased the order of numerical integration with
the following code:

dX = dx(bonus_intorder=2),
dS = dx(bonus_intorder=2).

Note that this is in particular required when ρ is not constant.

• When defining the bilinear form, we have to add additional terms to include the
boundary facets. The integration operator dX(skeleton=True) only sums over the
interior facets and hence the terms ending with dS(skeleton=True) are required to
account for the non-homogeneous Dirichlet boundary conditions.

• The condition numbers are estimated as the ratio of the largest and the smallest
eigenvalue, which are calculated with NGSolve. To calculate the condition number
of the preconditioned stiffness matrix, we decompose B into degrees of freedom
associated with the Dirichlet boundary conditions and the remainder:

B =

(
BFF BFD
BDF BDD

)
. (B.1)

Then, we define

J :=

(
diag(BFF )−1 0

0 0

)
(B.2)

and consider κ(JB).
Note that the conditions numbers calculated in this way might not be accurate in some
cases. For an exact calculation, which is computational expensive, of the condition
numbers with SciPy, we can use the code from section B.4.

from ngsolve import *
from ngsolve.la import EigenValues_Preconditioner
from calculateRHS import calculate_rhs

du = lambda u,w: InnerProduct(u,grad(w))

def Solve(k,exact,rho,uC,lamb,mesh,bl2 = False,cn = False):
fes = L2(mesh, order=k, dgjumps=True)

w,v = fes.TnT()

gfu = GridFunction(fes)

n = specialcf.normal(2)

h = specialcf.mesh_size

jump_w = w−w.Other()
jump_v = v−v.Other()
avg_duw = 0.5*(du(uC,w)+du(uC,w.Other()))
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B.3. Solving the problem

avg_duv = 0.5*(du(uC,v)+du(uC,v.Other()))

dX = dx(bonus_intorder = 2)

dS = ds(bonus_intorder = 2)

rhs,exactGrad = calculate_rhs(uC,exact,rho,rhoVol)

a = BilinearForm(fes,symmetric=True)

a += rho*w*v*dx
a += rho*du(uC,w)*du(uC,v)*dX
a += uC*n*−rho*avg_duw*jump_v*dX(skeleton=True)
a += uC*n*−rho*avg_duv*jump_w*dX(skeleton=True)
a += rho*lamb*1/h*(uC*n)*(uC*n)*jump_w*jump_v*dX(skeleton=True)
a += uC*n*−rho*du(uC,w)*v*dS(skeleton=True)
a += uC*n*−rho*du(uC,v)*w*dS(skeleton=True)
a += rho*lamb*1/h*(uC*n)*(uC*n)*w*v*dS(skeleton=True)

f = LinearForm(fes)

f += rhs*v*dX
f += uC*n*−rho*du(uC,v)*exact*dS(skeleton=True)
f += rho*lamb*1/h*(uC*n)*(uC*n)*exact*v*dS(skeleton=True)

a.Assemble()

f.Assemble()

aInv = a.mat.Inverse(freedofs=fes.FreeDofs(),inverse="

↪→ sparsecholesky")

gfu.vec[:] = 0.0

gfu.vec.data = aInv * f.vec

if cn == True:
lams = EigenValues_Preconditioner(a.mat,IdentityMatrix(a.

↪→ space.ndof))

Prelams = EigenValues_Preconditioner(a.mat,a.mat.

↪→ CreateSmoother())

cond = lams[−1]/lams[0]
condPre = Prelams[−1]/Prelams[0]

else:
cond = ’N/A’

condPre = ’N/A’

if bl2 == True:
w1,v1 = fes.TnT()

gfu2 = GridFunction(fes)

b = BilinearForm(fes,symmetric=True)

b += w1*v1*dX

l = LinearForm(fes)

60



Appendix B. Code

l += exact*v1*dX

b.Assemble()

l.Assemble()

gfu2.vec[:] = 0.0

gfu2.vec.data = b.mat.Inverse(freedofs=fes.FreeDofs(),inverse

↪→ ="sparsecholesky")*l.vec
return gfu,gfu2,exactGrad , cond, condPre

else:
return gfu, exactGrad , cond, condPre

B.4 Condition numbers with SciPy

This code block calculates the condition numbers using the software package SciPy1. The
first part calculated the condition number system matrix A, which is obtained from NGSolve.
Afterwards, a diagonal preconditioner J is constructed and the condition number of JA is
calculated.

import scipy
import scipy.sparse as sp
import scipy.sparse.linalg
import numpy as np

rows,cols,vals = a.mat.COO()

A = sp.csr_matrix((vals,(rows,cols)))

m = A.todense()

cond = np.linalg.cond(m)

diags = np.diagonal(m)

mdiag = sp.diags(diags,offsets=0)

mInv = sp.linalg.inv(mdiag)

PA = np.dot(mInv,A)

precond= np.linalg.cond(PA.todense())

1can be found at https://www.scipy.org.
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Chapter C

Convergence tables and Plots

This section contains supplementary material to the numerical experiments in chapter 3.
Often, when the results are similar for all three velocity fields, we only display them for one
velocity field to keep the chapter more readable, but refer to this chapter for the remaining
results.

C.1 Condition numbers for different penalization parameter λ

In 3.4 we investigated the influence of the penalization parameter λ on the condition
numbers of the matrix B and the diagonal preconditioned matrix JB. Here, the results for
the remaining polynomial degrees k = 2 and k = 3 are given.

velocity field u1 u2 u3

λ κ̄(B) κ̄(JB) κ̄(B) κ̄(JB) κ̄(B) κ̄(JB)

1 (−0.96) (−0.99) (−1.09) (−1.77) (−1.3) (−1.97)
2 (−1.34) (−1.0) (−1.77) (−7.82) (−2.66) (−1.73)
4 (−3.28) (−2.44) (−6.41) (−0.24) (−34.34) (−13.81)
8 (−92.62) (−85.59) 4854.36 3050.74 6206.03 3382.45
16 15177.8 13494.93 4641.7 2582.09 5731.83 3256.88
32 15187.75 12670.07 4630.54 2500.5 5449.14 3321.56
64 10809.05 9078.97 4752.74 2629.86 5318.47 3272.27
128 7771.74 8207.32 5037.85 2572.77 5508.3 2901.07
256 3174.39 5249.23 5819.9 2780.41 5862.26 3134.53
512 4693.75 2504.93 7522.26 3066.24 6285.11 3735.4
1024 6893.6 3573.18 10866.9 3804.44 7956.02 3916.73
2048 7266.88 6885.37 16787.84 5251.21 12424.41 5463.92
4096 10528.21 13344.03 24229.23 8722.69 19762.32 8950.7
8192 19697.0 23272.96 32307.2 13627.69 29394.07 16125.51

Table C.1: Condition numbers for k = 2 with different λ.
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Appendix C. Convergence tables and Plots

velocity field u1 u2 u3

λ κ̄(B) κ̄(JB) κ̄(B) κ̄(JB) κ̄(B) κ̄(JB)

1 (−0.77) (−124.45) (−0.86) (−1.33) (−0.86) (−0.95)
2 (−0.93) (−1.0) (−1.13) (−1.54) (−1.17) (−0.93)
4 (−1.33) (−4.18) (−2.03) (−3.34) (−2.83) (−2.63)
8 (−3.94) (−2.89) (−9.46) (−1.73) (−89.07) (−36.3)
16 10822.41 8440.66 3797.05 2152.13 4372.28 2843.0
32 10307.64 6868.96 3798.41 2230.3 4181.91 2853.16
64 6891.96 5041.76 3808.07 2427.73 4197.38 2674.81
128 4343.08 2984.17 4150.5 2473.97 4320.57 3043.0
256 3773.07 2015.01 4972.59 2788.08 4523.8 3065.25
512 4545.36 2610.42 6533.09 3296.44 5066.18 3352.56
1024 7039.35 3724.68 9159.1 3464.68 6889.09 3553.75
2048 9499.21 6717.17 12890.19 4307.31 10192.29 4310.72
4096 11460.26 12672.27 17038.71 6941.39 14701.37 7246.98
8192 19787.87 20911.2 20715.95 12098.72 19788.33 11982.5

Table C.2: Condition numbers for k = 3 with different λ.

C.2 Convergence tables for the problem without the volume
term

This section contains the convergence tables for the problem in section 3.5, where we only
consider the diffusion term. These tables supplement the plots 3.13, 3.14, and 3.15 and
are in accordance with the conclusion, that the problem is only well-posed for u1.
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C.2. Convergence tables for the problem without the volume term

refs eL2 (eoc) eW (eoc)
k = 1

1 5.47 · 10−1 3.00 · 100

2 2.73 · 10−1 (1.0) 1.44 · 100 (1.06)
3 1.77 · 10−1 (0.63) 9.86 · 10−1 (0.54)
4 8.17 · 10−2 (1.11) 5.40 · 10−1 (0.87)
5 2.96 · 10−2 (1.47) 2.73 · 10−1 (0.98)
6 8.73 · 10−3 (1.76) 1.33 · 10−1 (1.03)
7 2.31 · 10−3 (1.92) 6.51 · 10−2 (1.04)
8 5.85 · 10−4 (1.98) 3.20 · 10−2 (1.02)
k = 2

1 2.84 · 10−1 1.39 · 100

2 9.80 · 10−2 (1.53) 6.60 · 10−1 (1.07)
3 1.79 · 10−2 (2.45) 1.84 · 10−1 (1.84)
4 1.77 · 10−3 (3.34) 4.73 · 10−2 (1.96)
5 1.52 · 10−4 (3.54) 1.18 · 10−2 (2.0)
6 1.43 · 10−5 (3.42) 2.94 · 10−3 (2.0)
7 1.57 · 10−6 (3.18) 7.35 · 10−4 (2.0)
8 1.89 · 10−7 (3.05) 1.84 · 10−4 (2.0)
k = 3

1 1.23 · 10−1 9.23 · 10−1

2 1.92 · 10−2 (2.68) 1.60 · 10−1 (2.53)
3 8.96 · 10−4 (4.42) 2.47 · 10−2 (2.7)
4 4.06 · 10−5 (4.46) 3.15 · 10−3 (2.97)
5 2.21 · 10−6 (4.2) 3.95 · 10−4 (3.0)
6 1.35 · 10−7 (4.03) 4.94 · 10−5 (3.0)
7 8.40 · 10−9 (4.01) 6.16 · 10−6 (3.0)
8 5.37 · 10−1 (3.97) 7.70 · 10−7 (3.0)
k = 4

1 5.78 · 10−2 3.52 · 10−1

2 2.88 · 10−3 (4.32) 2.91 · 10−2 (3.6)
3 1.73 · 10−4 (4.06) 2.53 · 10−3 (3.52)
4 4.41 · 10−6 (5.3) 1.50 · 10−4 (4.07)
5 1.29 · 10−7 (5.1) 9.24 · 10−6 (4.02)
6 3.95 · 10−9 (5.03) 5.73 · 10−7 (4.01)
7 1.44 · 10−1 (4.78) 3.57 · 10−8 (4.0)
8 2.93 · 10−1 (-1.03) 2.61 · 10−9 (3.77)

Table C.3: Convergence table for u1 without the volume term.
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refs eL2 (eoc) eW (eoc)
k = 1

1 5.18 · 10−1 1.08 · 100

2 2.67 · 10−1 (0.96) 6.33 · 10−1 (0.77)
3 1.30 · 10−1 (1.04) 3.79 · 10−1 (0.74)
4 4.63 · 10−2 (1.49) 1.84 · 10−1 (1.04)
5 1.48 · 10−2 (1.64) 8.66 · 10−2 (1.09)
6 4.33 · 10−3 (1.78) 4.08 · 10−2 (1.09)
7 1.17 · 10−3 (1.88) 1.95 · 10−2 (1.06)
8 3.04 · 10−4 (1.95) 9.48 · 10−3 (1.04)
k = 2

1 3.29 · 10−1 7.51 · 10−1

2 7.48 · 10−2 (2.14) 2.50 · 10−1 (1.59)
3 1.16 · 10−2 (2.69) 5.99 · 10−2 (2.06)
4 1.44 · 10−3 (3.01) 1.44 · 10−2 (2.05)
5 1.47 · 10−4 (3.3) 3.50 · 10−3 (2.04)
6 1.56 · 10−5 (3.23) 8.66 · 10−4 (2.02)
7 2.26 · 10−6 (2.79) 2.16 · 10−4 (2.0)
8 2.92 · 10−5 (-3.69) 8.28 · 10−5 (1.38)
k = 3

1 1.35 · 10−1 3.80 · 10−1

2 1.79 · 10−2 (2.91) 6.97 · 10−2 (2.44)
3 1.16 · 10−3 (3.95) 8.67 · 10−3 (3.01)
4 8.58 · 10−5 (3.76) 1.09 · 10−3 (3.0)
5 5.12 · 10−6 (4.07) 1.34 · 10−4 (3.02)
6 2.76 · 10−5 (-2.43) 4.38 · 10−5 (1.61)
7 6.06 · 10−3 (-7.78) 6.06 · 10−3 (-7.11)
8 9.11 · 10−2 (-3.91) 9.11 · 10−2 (-3.91)
k = 4

1 7.77 · 10−2 1.75 · 10−1

2 3.66 · 10−3 (4.41) 1.15 · 10−2 (3.92)
3 1.79 · 10−4 (4.36) 7.67 · 10−4 (3.91)
4 1.18 · 10−5 (3.92) 5.21 · 10−5 (3.88)
5 1.53 · 10−3 (-7.02) 1.53 · 10−3 (-4.88)
6 1.22 · 10−1 (-6.31) 1.22 · 10−1 (-6.31)
7 1.80 · 10−1 (-0.56) 1.80 · 10−1 (-0.56)
8 1.86 · 10−1 (-0.05) 1.86 · 10−1 (-0.05)

Table C.4: Convergence table for u2 without the volume term.
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refs eL2 (eoc) eW (eoc)
k = 1

1 6.31 · 10−1 1.89 · 100

2 4.66 · 10−1 (0.44) 1.26 · 100 (0.58)
3 8.17 · 10−1 (-0.81) 1.39 · 100 (-0.13)
4 1.11 · 10−1 (2.87) 4.23 · 10−1 (1.71)
5 2.85 · 10−1 (-1.35) 4.49 · 10−1 (-0.09)
6 1.20 · 10−1 (1.24) 2.04 · 10−1 (1.13)
7 1.58 · 10−1 (-0.39) 2.00 · 10−1 (0.03)
8 8.11 · 10−2 (0.96) 1.02 · 10−1 (0.97)
k = 2

1 1.19 · 103 1.93 · 103

2 8.41 · 101 (3.82) 1.10 · 102 (4.13)
3 2.34 · 100 (5.17) 2.70 · 100 (5.35)
4 8.13 · 10−1 (1.52) 8.80 · 10−1 (1.62)
5 2.86 · 100 (-1.81) 2.87 · 100 (-1.71)
6 7.62 · 100 (-1.41) 7.62 · 100 (-1.41)
7 1.67 · 10−2 (8.83) 1.72 · 10−2 (8.79)
8 1.06 · 10−2 (0.66) 1.07 · 10−2 (0.69)
k = 3

1 3.70 · 101 3.70 · 101

2 5.75 · 106 (12.65) 5.75 · 106 (12.65)
3 1.22 · 10−1 (25.49) 1.39 · 10−1 (25.3)
4 1.10 · 100 (-3.17) 1.10 · 100 (-2.98)
5 1.18 · 100 (-0.1) 1.18 · 100 (-0.09)
6 1.53 · 10−1 (2.94) 1.54 · 10−1 (2.94)
7 7.81 · 10−2 (0.97) 7.82 · 10−2 (0.97)
8 7.71 · 10−2 (0.02) 7.71 · 10−2 (0.02)
k = 4

1 3.30 · 109 3.30 · 109

2 2.48 · 105 (13.7) 2.48 · 105 (13.7)
3 8.40 · 10−1 (18.17) 8.52 · 10−1 (18.15)
4 2.55 · 10−1 (1.72) 2.56 · 10−1 (1.74)
5 2.69 · 10−1 (-0.08) 2.69 · 10−1 (-0.07)
6 2.64 · 10−1 (0.03) 2.64 · 10−1 (0.03)
7 2.41 · 10−1 (0.13) 2.41 · 10−1 (0.13)
8 1.70 · 10−1 (0.5) 1.70 · 10−1 (0.5)

Table C.5: Convergence table for u3 without the volume term.
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C.3 Convergence plots for constant densities on the circle ge-
ometry

In section 3.6.1, we demonstrated that the geometry switch to the circle does not influence
the performance of the method for constant densities. There, we only displayed the errors
for the velocity field u3. Here, the errors for the remaining velocity fields can be found.
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Figure C.1: Numerical errors for u1 with ρ ∈ {1, 100, 10000} in the L2-norm.
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Figure C.2: Numerical errors for u2 with ρ ∈ {1, 100, 10000} in the L2-norm.
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Figure C.3: Numerical errors for u1 with ρ ∈ {1, 100, 10000} in the W -norm.
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C.4. Convergence plots for a non-constant density
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Figure C.4: Numerical errors for u2 with ρ ∈ {1, 100, 10000} in the W -norm.

C.4 Convergence plots for a non-constant density

The results in the W -norm for the convergence studies in section 3.6.1 are quite similar.
Hence, we only showed the convergence plot for u2 in figure 3.25. The plots for u1 and u3

are displayed below.
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Figure C.5: Numerical errors in the W -norm for u1 with and ρn,n ∈ {4, 8, 12, 16}.
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Appendix C. Convergence tables and Plots
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Figure C.6: Numerical errors in the W -norm for u3 with and ρn,n ∈ {4, 8, 12, 16}.

C.5 Convergence tables for non-constant ρ

In section 3.6.1 we further considered the performance of the method for a non-constant
density ρ. To describe the results, we used the errors for the velocity field u2. Here, the
errors for the remaining velocity fields u1 and u3 are displayed.
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C.5. Convergence tables for non-constant ρ

ρ8 ρ16

refs eL2 (eoc) eL2 (eoc)
k = 1

1 1.28 · 10−1 6.35 · 10−1

2 6.24 · 10−2 (1.03) 3.16 · 10−1 (1.01)
3 2.22 · 10−2 (1.49) 1.24 · 10−1 (1.35)
4 6.61 · 10−3 (1.75) 3.48 · 10−2 (1.84)
5 1.84 · 10−3 (1.84) 8.80 · 10−3 (1.98)
6 5.12 · 10−4 (1.85) 2.21 · 10−3 (1.99)
k = 2

1 9.91 · 10−3 1.74 · 10−2

2 1.25 · 10−3 (2.99) 3.69 · 10−3 (2.24)
3 1.41 · 10−4 (3.15) 3.85 · 10−4 (3.26)
4 1.46 · 10−5 (3.27) 3.03 · 10−5 (3.66)
5 1.66 · 10−6 (3.13) 2.52 · 10−6 (3.59)
6 2.22 · 10−7 (2.91) 2.62 · 10−7 (3.26)
k = 3

1 1.08 · 10−3 3.11 · 10−3

2 5.25 · 10−5 (4.36) 1.14 · 10−4 (4.77)
3 3.12 · 10−6 (4.07) 4.70 · 10−6 (4.6)
4 1.76 · 10−7 (4.15) 2.39 · 10−7 (4.3)
5 9.92 · 10−9 (4.15) 1.18 · 10−8 (4.34)
6 6.37 · 10−10 (3.96) 7.10 · 10−10 (4.05)
k = 4

1 1.61 · 10−4 4.58 · 10−4

2 4.86 · 10−6 (5.05) 8.28 · 10−6 (5.79)
3 1.06 · 10−7 (5.52) 1.35 · 10−7 (5.94)
4 3.27 · 10−9 (5.02) 3.74 · 10−9 (5.17)
5 1.02 · 10−10 (5.0) 1.19 · 10−10 (4.98)
6 1.59 · 10−10 (-0.65) 1.82 · 10−10 (-0.62)

Table C.6: L2-convergence table for u1 with non-constant ρn, n ∈ {8, 16}.
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Appendix C. Convergence tables and Plots

ρ8 ρ16

refs eL2 (eoc) eL2 (eoc)
k = 1

1 1.22 · 10−1 3.04 · 10−1

2 3.70 · 10−2 (1.72) 1.04 · 10−1 (1.55)
3 1.03 · 10−2 (1.85) 3.84 · 10−2 (1.44)
4 3.00 · 10−3 (1.78) 1.44 · 10−2 (1.42)
5 8.57 · 10−4 (1.81) 4.56 · 10−3 (1.66)
6 2.31 · 10−4 (1.89) 1.26 · 10−3 (1.85)
k = 2

1 6.56 · 10−3 1.34 · 10−2

2 8.28 · 10−4 (2.99) 1.51 · 10−3 (3.15)
3 1.11 · 10−4 (2.9) 1.33 · 10−4 (3.51)
4 1.43 · 10−5 (2.95) 1.58 · 10−5 (3.07)
5 1.70 · 10−6 (3.07) 1.80 · 10−6 (3.13)
6 2.12 · 10−7 (3.01) 2.32 · 10−7 (2.96)
k = 3

1 1.21 · 10−3 2.18 · 10−3

2 1.09 · 10−4 (3.48) 1.72 · 10−4 (3.66)
3 7.32 · 10−6 (3.89) 8.70 · 10−6 (4.3)
4 3.28 · 10−7 (4.48) 3.46 · 10−7 (4.65)
5 1.91 · 10−8 (4.1) 2.01 · 10−8 (4.11)
6 1.12 · 10−9 (4.09) 1.16 · 10−9 (4.11)
k = 4

1 8.39 · 10−5 2.11 · 10−4

2 7.75 · 10−6 (3.44) 1.64 · 10−5 (3.68)
3 3.61 · 10−7 (4.42) 5.38 · 10−7 (4.93)
4 1.01 · 10−8 (5.17) 1.18 · 10−8 (5.52)
5 1.89 · 10−10 (5.73) 2.11 · 10−10 (5.8)
6 8.56 · 10−11 (1.14) 8.29 · 10−11 (1.35)

Table C.7: L2-converge table for u3 with non-constant ρn, n ∈ {8, 16}.
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C.5. Convergence tables for non-constant ρ

ρ8 ρ16

refs eW (eoc) eW (eoc)
k = 1

1 3.94 · 100 2.50 · 101

2 2.06 · 100 (0.94) 1.37 · 101 (0.87)
3 1.02 · 100 (1.02) 6.90 · 100 (0.99)
4 4.98 · 10−1 (1.03) 3.34 · 100 (1.05)
5 2.45 · 10−1 (1.02) 1.62 · 100 (1.04)
6 1.21 · 10−1 (1.01) 7.95 · 10−1 (1.03)
k = 2

1 6.18 · 10−1 4.18 · 10+

2 1.60 · 10−1 (1.95) 1.12 · 10+ (1.9)
3 4.03 · 10−2 (1.99) 2.82 · 10−1 (1.99)
4 1.01 · 10−2 (2.0) 7.05 · 10−2 (2.0)
5 2.51 · 10−3 (2.0) 1.76 · 10−2 (2.0)
6 6.27 · 10−4 (2.0) 4.40 · 10−3 (2.0)
k = 3

1 8.33 · 10−2 5.62 · 10−1

2 1.08 · 10−2 (2.95) 7.11 · 10−2 (2.98)
3 1.37 · 10−3 (2.98) 9.02 · 10−3 (2.98)
4 1.71 · 10−4 (3.0) 1.13 · 10−3 (3.0)
5 2.13 · 10−5 (3.0) 1.41 · 10−4 (3.0)
6 2.67 · 10−6 (3.0) 1.77 · 10−5 (3.0)
k = 4

1 5.64 · 10−3 4.11 · 10−2

2 3.35 · 10−4 (4.07) 2.44 · 10−3 (4.08)
3 2.04 · 10−5 (4.04) 1.46 · 10−4 (4.06)
4 1.27 · 10−6 (4.01) 9.09 · 10−6 (4.01)
5 7.92 · 10−8 (4.0) 5.67 · 10−7 (4.0)
6 5.77 · 10−9 (3.78) 4.05 · 10−8 (3.81)

Table C.8: W -convergence table for u1 with non-constant ρn, n ∈ {8, 16}.
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Appendix C. Convergence tables and Plots

ρ8 ρ16

refs eW (eoc) eW (eoc)
k = 1

1 2.12 · 100 1.12 · 101

2 1.07 · 100 (0.99) 5.68 · 100 (0.98)
3 5.26 · 10−1 (1.02) 2.80 · 100 (1.02)
4 2.60 · 10−1 (1.02) 1.37 · 100 (1.03)
5 1.29 · 10−1 (1.01) 6.78 · 10−1 (1.02)
6 6.39 · 10−2 (1.01) 3.37 · 10−1 (1.01)
k = 2

1 3.33 · 10−1 1.84 · 100

2 8.49 · 10−2 (1.97) 4.78 · 10−1 (1.94)
3 2.14 · 10−2 (1.99) 1.20 · 10−1 (1.99)
4 5.36 · 10−3 (2.0) 3.01 · 10−2 (2.0)
5 1.34 · 10−3 (2.0) 7.51 · 10−3 (2.0)
6 3.35 · 10−4 (2.0) 1.88 · 10−3 (2.0)
k = 3

1 4.52 · 10−2 2.44 · 10−1

2 5.99 · 10−3 (2.92) 3.18 · 10−2 (2.94)
3 7.48 · 10−4 (3.0) 3.98 · 10−3 (3.0)
4 9.30 · 10−5 (3.01) 4.96 · 10−4 (3.01)
5 1.16 · 10−5 (3.0) 6.18 · 10−5 (3.0)
6 1.45 · 10−6 (3.0) 7.72 · 10−6 (3.0)
k = 4

1 2.47 · 10−3 1.48 · 10−2

2 1.50 · 10−4 (4.04) 8.45 · 10−4 (4.13)
3 9.27 · 10−6 (4.01) 5.09 · 10−5 (4.05)
4 5.78 · 10−7 (4.0) 3.13 · 10−6 (4.03)
5 3.61 · 10−8 (4.0) 1.94 · 10−7 (4.01)
6 2.49 · 10−9 (3.86) 1.32 · 10−8 (3.88)

Table C.9: W -converge table for u3 with non-constant ρn, n ∈ {8, 16}.
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